497 research outputs found
Volumetric quantitative optical coherence elastography with an iterative inversion method
It is widely accepted that accurate mechanical properties of three-dimensional soft tissues and cellular samples are not available on the microscale. Current methods based on optical coherence elastography can measure displacements at the necessary resolution, and over the volumes required for this task. However, in converting this data to maps of elastic properties, they often impose assumptions regarding homogeneity in stress or elastic properties that are violated in most realistic scenarios. Here, we introduce novel, rigorous, and computationally efficient inverse problem techniques that do not make these assumptions, to realize quantitative volumetric elasticity imaging on the microscale. Specifically, we iteratively solve the three-dimensional elasticity inverse problem using displacement maps obtained from compression optical coherence elastography. This is made computationally feasible with adaptive mesh refinement and domain decomposition methods. By employing a transparent, compliant surface layer with known shear modulus as a reference for the measurement, absolute shear modulus values are produced within a millimeter-scale sample volume. We demonstrate the method on phantoms, on a breast cancer sample ex vivo, and on human skin in vivo. Quantitative elastography on this length scale will find wide application in cell biology, tissue engineering and medicine.Publisher PDFPeer reviewe
Management recommendations for the northern goshawk in the southwestern United States
Present forest conditions--loss of a herbaceous and shrubby understory, reductions in the amount of older forests, and increased areas of dense tree regeneration--reflect the extent of human influence on these forests. These changes may also be affecting goshawk populations. Information on goshawk nesting habitat and foraging behavior, and the food and habitats of selected goshawk prey, was therefore synthesized to develop a set of management objectives, desired forest conditions, and management recommendations. Key objectives of the guidelines are to provide (1) nesting, post-fledging, and foraging areas for goshawks, and (2) habitat to support abundant populations of 14 primary goshawk prey. Thinning trees in the understory, creating small openings in the forest, and prescribed fires should help produce and maintain the desired forest conditions. Other habitat elements critical for maintaining both goshawk and prey populations include abundant snags and large downed logs, woody debris, interspersion of different tree sizes across the landscape, and the majority of a goshawk's home range in older-aged forests. These guidelines should also benefit forest health, soil productivity, and the habitats of other old-growth dependent plants and animals
A Gaussian Theory of Superfluid--Bose-Glass Phase Transition
We show that gaussian quantum fluctuations, even if infinitesimal, are
sufficient to destroy the superfluidity of a disordered boson system in 1D and
2D. The critical disorder is thus finite no matter how small the repulsion is
between particles. Within the gaussian approximation, we study the nature of
the elementary excitations, including their density of states and mobility edge
transition. We give the gaussian exponent at criticality in 1D and show
that its ratio to of the pure system is universal.Comment: Revtex 3.0, 11 pages (4 figures will be sent through airmail upon
request
Disordered Boson Systems: A Perturbative Study
A hard-core disordered boson system is mapped onto a quantum spin 1/2
XY-model with transverse random fields. It is then generalized to a system of
spins with an arbitrary magnitude S and studied through a 1/S expansion. The
first order 1/S expansion corresponds to a spin-wave theory. The effect of weak
disorder is studied perturbatively within such a first order 1/S scheme. We
compute the reduction of the speed of sound and the life time of the Bloch
phonons in the regime of weak disorder. Generalizations of the present study to
the strong disordered regime are discussed.Comment: 27 pages, revte
Open tubular liquid-chromatography and the analysis of single neurons
Liquid chromatography in open tubular columns (OTLC) offers a means of achieving separations of high resolving power within analysis times of minutes to hours. A theory which predicts the optimal dimensions for an open tubular column for a given set of analytical conditions has been developed [1]. This theory predicts that for a wide range of possible inlet pressures and analysis times the most efficient columns will result when the column inner diameter is between 1.5 and 3 μm. A column of 2 μm diameter and 2 meter length should be capable of producing a million theoretical plates for an analyte with a capacity factor of 10 (strongly retained) and a retention time of 100 minutes
Testing and calibrating parametric wave transformation models on natural beaches
Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Coastal Engineering 55 (2008): 224-235, doi:10.1016/j.coastaleng.2007.10.002.To provide coastal engineers and scientists with a detailed inter-comparison of
widely used parametric wave transformation models, several models are tested and
calibrated with extensive observations from 6 field experiments on barred and unbarred
beaches. Using previously calibrated (“default”) values of a free parameter γ, all models
predict the observations reasonably well (median root-mean-square wave height errors are
between 10% and 20%) at all field sites. Model errors can be reduced by roughly 50% by
tuning γ for each data record. No tuned or default model provides the best predictions for
all data records or at all experiments. Tuned γ differ for the different models and
experiments, but in all cases γ increases as the hyperbolic tangent of the deep-water wave
height, Ho. Data from 2 experiments are used to estimate empirical, universal curves for γ
based on Ho. Using the new parameterization, all models have similar accuracy, and
usually show increased skill relative to using default γ.The Office of Naval Research and the National Science
Foundation provided support
Signals for Lorentz Violation in Electrodynamics
An investigation is performed of the Lorentz-violating electrodynamics
extracted from the renormalizable sector of the general Lorentz- and
CPT-violating standard-model extension. Among the unconventional properties of
radiation arising from Lorentz violation is birefringence of the vacuum. Limits
on the dispersion of light produced by galactic and extragalactic objects
provide bounds of 3 x 10^{-16} on certain coefficients for Lorentz violation in
the photon sector. The comparative spectral polarimetry of light from
cosmologically distant sources yields stringent constraints of 2 x 10^{-32}.
All remaining coefficients in the photon sector are measurable in
high-sensitivity tests involving cavity-stabilized oscillators. Experimental
configurations in Earth- and space-based laboratories are considered that
involve optical or microwave cavities and that could be implemented using
existing technology.Comment: 23 pages REVTe
- …