67 research outputs found

    Spin-orbit fields in asymmetric (001)-oriented GaAs/AlxGa 1-xAs quantum wells

    Get PDF
    We measure simultaneously the in-plane electron g factor and spin-relaxation rate in a series of undoped inversion-asymmetric (001)-oriented GaAs/AlGaAs quantum wells by spin-quantum beat spectroscopy. In combination the two quantities reveal the absolute values of both the Rashba and the Dresselhaus coefficients and prove that the Rashba coefficient can be negligibly small despite huge conduction-band potential gradients which break the inversion symmetry. The negligible Rashba coefficient is a consequence of the "isomorphism" of conduction- and valence-band potentials in quantum systems where the asymmetry is solely produced by alloy variations. © 2011 American Physical Society

    Strain-induced spin relaxation anisotropy in symmetric (001)-oriented GaAs quantum wells

    Get PDF
    We show experimentally, using spin quantum beat spectroscopy, that strain applied to an undoped symmetric (001) GaAs/AlGaAs multiple quantum well causes an in-plane anisotropy of the spin-relaxation rate Γs, but leaves the electron Landé g factor isotropic. The spin-relaxation-rate anisotropy gives a direct measure of the bulk inversion asymmetry and the strain contributions to the conduction-band spin splitting. The comparison of the measured strain-splitting coefficient C3 for the quantum well with the value for bulk GaAs suggests a dependence on electron quantum confinement. The isotropic g factor implies a symmetric conduction electron wave function, whereas the anisotropic spin-relaxation rate requires a nonzero expectation value of the valence-band potential gradient on the conduction-band states. Therefore, the experiment suggests that strain generates an effective valence-band potential gradient, while the conduction-band potential remains symmetrical to a good approximation. © 2011 American Physical Society

    Effect of symmetry reduction on the spin dynamics of (001)-oriented GaAs quantum wells

    Get PDF
    Spin quantum beat spectroscopy is employed to investigate the in-plane anisotropy of the spin dynamics in (001) GaAs/AlGaAs quantum wells induced by an external electric field. This technique allows the anisotropy of the spin relaxation rate Γs and the electron Landé g factor g* to be measured simultaneously. The measurements are compared to similar data from (001) GaAs/AlGaAs quantum wells with applied shear strain and asymmetric barrier growth. All of these operations act to reduce the symmetry compared to that of a symmetric (001) quantum well in an identical manner (D2d → C2v). However, by looking at the anisotropy of both Γs and g* simultaneously we show that the microscopic actions of these symmetry breaking operations are very different. The experiments attest that although symmetry arguments are a very useful tool to identify the allowed spin dependent properties of a material system, only a microscopic approach reveals if allowed anisotropies will manifest. © 2013 American Physical Society

    Note on a sigma model connection with instanton dynamics

    Full text link
    It is well known that the instanton approach to QCD generates an effective term which looks like a three flavor determinant of quark bilinears. This has the right behavior to explain the unusual mass and mixing of the η(958)\eta(958) meson, as is often simply illustrated with the aid of a linear SU(3) sigma model. It is less well known that the instanton analysis generates another term which has the same transformation property but does not have a simple interpretation in terms of this usual linear sigma model. Here we point out that this term has an interpretation in a generalized linear sigma model containing two chiral nonets. The second chiral nonet is taken to correspond to mesons having two quarks and two antiquarks in their makeup. The generalized model seems to be useful for learning about the spectrum of low lying scalar mesons which have been emerging in the last few years. The physics of the new term is shown to be related to the properties of an "excited" η\eta' state present in the generalized model and for which there are some experimental candidates.Comment: reference added, minor typos correcte

    Checklist das Spermatophyta do Estado de São Paulo, Brasil

    Full text link

    Anisotropy of the electron g factor in lattice-matched and strained-layer III-V quantum wells

    No full text
    The influence of quantum confinement and built-in strain on conduction-electron g factors in lattice-matched GaAs/Al0.35Ga0.65As and strained-layer In0.11Ga0.89As/GaAs quantum wells is investigated for well widths between 3 and 20 nm. The magnitude, sign, and anisotropy of the g factors were obtained from quantum beats due to Larmor precession of electron spins in time-resolved, polarization-sensitive, pump-probe reflection at 10 K in magnetic fields applied along and at 45° to the growth axis. Slowly varying shifts of precession frequency, due to buildup of nuclear polarization in the samples over ?1 h and equivalent to up to 0.5 T, occurred for fixed circular pump polarization and oblique applied fields. These Overhauser shifts confirmed the sign of the g factors and were eliminated by modulation of pump polarization to give precise g factors. For both material systems, variation of the g factor with well width follows qualitatively the dependence on energy, determined by quantum confinement, calculated from three-band k?p theory in the bulk well material. For the lattice-matched system there is excellent quantitative agreement with a full three-band k?p calculation including anisotropy effects of the quantum-well potential. For the strained-layer system, detailed quantum-well calculations do not exist but k?p theory for epitaxial layers predicts 10 times greater anisotropy for wide wells than we observe. This discrepancy is also apparent in previous, less complete, investigations of strained-layer systems and highlights the need for further theoretical effort

    Nuclear effects in ultrafast quantum-well spin-dynamics

    No full text
    Ultrafast optical methods are used to study low temperature nuclear spin polarisation and electron spin precession and relaxation in an oblique magnetic field in undoped GaAs/AlGaAs quantum wells. We find that electron localisation dramatically extends electron spin relaxation and accelerates nuclear spin polarisation which is manifest as a large time-dependent Overhauser shift in electron Larmor precession frequency. Nuclear polarisation is a two-stage process, which we suggest involves contact hyperfine interaction at electron localisation centres and nuclear spin diffusion to the remaining nuclei of the sample. Special samples are used to investigate nuclear spin diffusion through the barriers, which is found to be an order of magnitude slower than within the wells, consistent with extra dipolar and quadrupolar disorder in the alloy

    Spin dynamics in (110)-oriented quantum wells

    No full text
    Quantum structures of III–V semiconductors grown on (1 1 0)-oriented substrates are promising for spintronic applications because they allow us to engineer and control spin dynamics of electrons. We summarise the theoretical ideas, which are the basis for this claim and review experiments to investigate them.<br/
    corecore