11 research outputs found

    Asymptotically exact dispersion relations for collective modes in a confined charged Fermi liquid

    Full text link
    Using general local conservations laws we derive dispersion relations for edge modes in a slab of electron liquid confined by a symmetric potential. The dispersion relations are exact up to λ2q2\lambda^{2} q^{2}, where qq is a wave vector and λ\lambda is an effective screening length. For a harmonic external potential the dispersion relations are expressed in terms of the {\em exact} static pressure and dynamic shear modulus of a homogeneous liquid with the density taken at the slab core. We also derive a simple expression for the frequency shift of the dipole (Kohn) modes in nearly parabolic quantum dots in a magnetic field.Comment: RevTeX4, 4 pages. Revised version with new results on quantum qots and wires. Published in Phys.Rev.

    A Current Induced Transition in atomic-sized contacts of metallic Alloys

    Get PDF
    We have measured conductance histograms of atomic point contacts made from the noble-transition metal alloys CuNi, AgPd, and AuPt for a concentration ratio of 1:1. For all alloys these histograms at low bias voltage (below 300 mV) resemble those of the noble metals whereas at high bias (above 300 mV) they resemble those of the transition metals. We interpret this effect as a change in the composition of the point contact with bias voltage. We discuss possible explanations in terms of electromigration and differential diffusion induced by current heating.Comment: 5 pages, 6 figure

    Finite-cluster description of electromigration

    Get PDF
    corecore