112 research outputs found

    Using a cognitive architecture to examine what develops

    Get PDF
    Different theories of development propose alternative mechanisms by which development occurs. Cognitive architectures can be used to examine the influence of each proposed mechanism of development while keeping all other mechanisms constant. An ACT-R computational model that matched adult behavior in solving a 21-block pyramid puzzle was created. The model was modified in three ways that corresponded to mechanisms of development proposed by developmental theories. The results showed that all the modifications (two of capacity and one of strategy choice) could approximate the behavior of 7-year-old children on the task. The strategy-choice modification provided the closest match on the two central measures of task behavior (time taken per layer, r = .99, and construction attempts per layer, r = .73). Modifying cognitive architectures is a fruitful way to compare and test potential developmental mechanisms, and can therefore help in specifying “what develops.

    Linear Numerical-Magnitude Representations Aid Children's Memory for Numbers

    Get PDF
    We investigated the relation between children’s numerical-magnitude representations and their memory for numbers. Results of three experiments indicated that the more linear children’s magnitude representations were, the more closely their memory of the numbers approximated the numbers presented. This relation was present for preschoolers and second graders, for children from low-income and middle-income backgrounds, for the ranges 0 through 20 and 0 through 1,000, and for four different tasks (categorization and number-line, measurement, and numerosity estimation) measuring numerical-magnitude representations. Other types of numerical knowledge—numeral identification and counting—were unrelated to recall of the same numerical information. The results also indicated that children’s representations vary from trial to trial with the numbers they need to represent and remember and that general strategy-choice mechanisms may operate in selection of numerical representations, as in other domains.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    The Kuiper Belt and Other Debris Disks

    Full text link
    We discuss the current knowledge of the Solar system, focusing on bodies in the outer regions, on the information they provide concerning Solar system formation, and on the possible relationships that may exist between our system and the debris disks of other stars. Beyond the domains of the Terrestrial and giant planets, the comets in the Kuiper belt and the Oort cloud preserve some of our most pristine materials. The Kuiper belt, in particular, is a collisional dust source and a scientific bridge to the dusty "debris disks" observed around many nearby main-sequence stars. Study of the Solar system provides a level of detail that we cannot discern in the distant disks while observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book "Astrophysics in the Next Decade

    When Actions Speak Louder Than Words

    No full text
    • …
    corecore