110 research outputs found
New Magnetic Excitations in the Spin-Density-Wave of Chromium
Low-energy magnetic excitations of chromium have been reinvestigated with a
single-Q crystal using neutron scattering technique. In the transverse
spin-density-wave phase a new type of well-defined magnetic excitation is found
around (0,0,1) with a weak dispersion perpendicular to the wavevector of the
incommensurate structure. The magnetic excitation has an energy gap of E ~ 4
meV and at (0,0,1) exactly corresponds to the Fincher mode previously studied
only along the incommensurate wavevector.Comment: 4 pages, 4 figure
Charging Effects and Quantum Crossover in Granular Superconductors
The effects of the charging energy in the superconducting transition of
granular materials or Josephson junction arrays is investigated using a
pseudospin one model. Within a mean-field renormalization-group approach, we
obtain the phase diagram as a function of temperature and charging energy. In
contrast to early treatments, we find no sign of a reentrant transition in
agreement with more recent studies. A crossover line is identified in the
non-superconducting side of the phase diagram and along which we expect to
observe anomalies in the transport and thermodynamic properties. We also study
a charge ordering phase, which can appear for large nearest neighbor Coulomb
interaction, and show that it leads to first-order transitions at low
temperatures. We argue that, in the presence of charge ordering, a non
monotonic behavior with decreasing temperature is possible with a maximum in
the resistance just before entering the superconducting phase.Comment: 15 pages plus 4 fig. appended, Revtex, INPE/LAS-00
Analysis of Strong-Coupling Parameters for Superfluid 3He
Superfluid He experiments show strong deviation from the weak-coupling
limit of the Ginzburg-Landau theory, and this discrepancy grows with increasing
pressure. Strong-coupling contributions to the quasiparticle interactions are
known to account for this effect and they are manifest in the five
-coefficients of the fourth order Ginzburg-Landau free energy terms. The
Ginzburg-Landau free energy also has a coefficient to include magnetic
field coupling to the order parameter. From NMR susceptibility experiments, we
find the deviation of from its weak-coupling value to be negligible at
all pressures. New results for the pressure dependence of four different
combinations of -coefficients, _{345}, _{12},
_{245}, and _{5} are calculated and comparison is made with
theory.Comment: 6 pages, 2 figures, 1 table. Manuscript prepared for QFS200
High frequency sound in superfluid 3He-B
We present measurements of the absolute phase velocity of transverse and
longitudinal sound in superfluid 3He-B at low temperature, extending from the
imaginary squashing mode to near pair-breaking. Changes in the transverse phase
velocity near pair-breaking have been explained in terms of an order parameter
collective mode that arises from f-wave pairing interactions, the so-called
J=4- mode. Using these measurements, we establish lower bounds on the energy
gap in the B-phase. Measurement of attenuation of longitudinal sound at low
temperature and energies far above the pair-breaking threshold, are in
agreement with the lower bounds set on pair-breaking. Finally, we discuss our
estimations for the strength of the f-wave pairing interactions and the Fermi
liquid parameter, F4s.Comment: 15 pages, 8 figures, accepted to J. Low Temp. Phy
Spin density wave dislocation in chromium probed by coherent x-ray diffraction
We report on the study of a magnetic dislocation in pure chromium. Coherent
x-ray diffraction profiles obtained on the incommensurate Spin Density Wave
(SDW) reflection are consistent with the presence of a dislocation of the
magnetic order, embedded at a few micrometers from the surface of the sample.
Beyond the specific case of magnetic dislocations in chromium, this work may
open up a new method for the study of magnetic defects embedded in the bulk.Comment: 8 pages, 7 figure
Quantum Computing of Quantum Chaos in the Kicked Rotator Model
We investigate a quantum algorithm which simulates efficiently the quantum
kicked rotator model, a system which displays rich physical properties, and
enables to study problems of quantum chaos, atomic physics and localization of
electrons in solids. The effects of errors in gate operations are tested on
this algorithm in numerical simulations with up to 20 qubits. In this way
various physical quantities are investigated. Some of them, such as second
moment of probability distribution and tunneling transitions through invariant
curves are shown to be particularly sensitive to errors. However,
investigations of the fidelity and Wigner and Husimi distributions show that
these physical quantities are robust in presence of imperfections. This implies
that the algorithm can simulate the dynamics of quantum chaos in presence of a
moderate amount of noise.Comment: research at Quantware MIPS Center http://www.quantware.ups-tlse.fr,
revtex 11 pages, 13 figs, 2 figs and discussion adde
Recommended from our members
Helical spin-density wave in Fe/Cr trilayers with perfect interfaces
Despite the presence of only collinear, commensurate (C) and incommensurate (I) spin-density waves (SDW`s) in bulk Cr, the interfacial steps in Fe/Cr multilayers are now believed to stabilize a helical (H) SDW within the Cr spacer. Yet H SDW`s were first predicted in an Fe/Cr trilayer with perfect interfaces when the orientation of the Fe moments does not favor C ordering: if the number of Cr monolayers is even (odd) and the Fe moments are pointing in the same (opposite) direction, then a C SDW does not gain any coupling energy. Under these circumstances, a simple model verifies that H ordering is indeed favored over 1 ordering provided that the Fermi surface mismatch is sufficiently small or the temperature sufficiently high
Spin fluctuations in nearly magnetic metals from ab-initio dynamical spin susceptibility calculations:application to Pd and Cr95V5
We describe our theoretical formalism and computational scheme for making
ab-initio calculations of the dynamic paramagnetic spin susceptibilities of
metals and alloys at finite temperatures. Its basis is Time-Dependent Density
Functional Theory within an electronic multiple scattering, imaginary time
Green function formalism. Results receive a natural interpretation in terms of
overdamped oscillator systems making them suitable for incorporation into spin
fluctuation theories. For illustration we apply our method to the nearly
ferromagnetic metal Pd and the nearly antiferromagnetic chromium alloy Cr95V5.
We compare and contrast the spin dynamics of these two metals and in each case
identify those fluctuations with relaxation times much longer than typical
electronic `hopping times'Comment: 21 pages, 9 figures. To appear in Physical Review B (July 2000
Recommended from our members
Charge-density wave and magnetic phase diagram of chromium alloys
The magnetic phase diagrams of all dilute Cr alloys can be explained by a simple theoretical model with coupled spin- and charge-density waves and a finite electron reservoir. If the charge-density wave and electron reservoir are sufficiently large, the paramagnetic to commensurate spin-density wave transition becomes strongly first order, as found in Cr{sub 1- x}Fe{sub x} and Cr{sub 1-x}Si{sub x} alloys. The observed discontinuity of the slope dT{sub N}/dx at the triple point and the bending of the CI phase boundary are also natural consequences of this model
- …
