5 research outputs found

    Salicylic acid fights against Fusarium wilt by inhibiting target of rapamycin signaling pathway in Fusarium oxysporum

    No full text
    Introduction: Biofungicides with low toxicity and high efficiency are a global priority for sustainable agricultural development. Phytohormone salicylic acid (SA) is an ancient medicine against various diseases in humans and activates the immune system in plants, but little is known of its function as a biofungicide. Objectives: Here, Fusarium oxysporum, the causal agent of devastating Fusarium wilt and immunodepressed patients, was used as a model system to explore whether SA can enter the pathogen cells and suppress key targets of the pathogen. Methods: Oxford Nanopore MinION sequencing and high-throughput chromosome conformation capture (Hi-C) sequencing were used to analyzed the genome of F. oxysporum. In addition, RNA-seq, qRT-PCR, and western blotting were conducted to detect gene and protein expression levels.Results: We isolated and sequenced the genome of F. oxysporum from potato dry rot, and the F. oxysporum included 12 chromosomes and 52.3 Mb genomic length. Pharmacological assays showed that exogenous application of SA can efficiently arrest hyphal growth, spore production, and pathogenicity of F. oxysporum, whereas endogenous salicylate hydroxylases significantly detoxify SA. The synergistic growth inhibition of F. oxysporum was observed when SA was combined with rapamycin. Kinase assays showed that SA inhibits FoTOR complex 1 (FoTORC1) by activating FoSNF1 in vivo. Transgenic potato plants with the interference of FoTOR1 and FoSAH1 genes inhibited the invasive growth of hyphae and significantly prevented the occurrence of Fusarium wilt. Conclusion: This study revealed the underlying mechanisms of SA against F. oxysporum and provided insights into SA in controlling various fungal diseases by targeting the SNF1-TORC1 pathway of pathogens

    Transcripts of sulphur metabolic genes are co-ordinately regulated in developing seeds of common bean lacking phaseolin and major lectins

    No full text
    The lack of phaseolin and phytohaemagglutinin in common bean (dry bean, Phaseolus vulgaris) is associated with an increase in total cysteine and methionine concentrations by 70% and 10%, respectively, mainly at the expense of an abundant non-protein amino acid, S-methyl-cysteine. Transcripts were profiled between two genetically related lines differing for this trait at four stages of seed development using a high density microarray designed for common bean. Transcripts of multiple sulphur-rich proteins were elevated, several previously identified by proteomics, including legumin, basic 7S globulin, albumin-2, defensin, albumin-1, the Bowman-Birk type proteinase inhibitor, the double-headed trypsin inhibitor, and the Kunitz trypsin inhibitor. A co-ordinated regulation of transcripts coding for sulphate transporters, sulphate assimilatory enzymes, serine acetyltransferases, cystathionine \u3b2-lyase, homocysteine S-methyltransferase and methionine gamma-lyase was associated with changes in cysteine and methionine concentrations. Differential gene expression of sulphur-rich proteins preceded that of sulphur metabolic enzymes, suggesting a regulation by demand from the protein sink. Up-regulation of SERAT1;1 and-1;2 expression revealed an activation of cytosolic O-acetylserine biosynthesis. Down-regulation of SERAT2;1 suggested that cysteine and S-methyl-cysteine biosynthesis may be spatially separated in different subcellular compartments. Analysis of free amino acid profiles indicated that enhanced cysteine biosynthesis was correlated with a depletion of O-acetylserine. These results contribute to our understanding of the regulation of sulphur metabolism in developing seed in response to a change in the composition of endogenous proteins. \ua9 2012 The Author.Peer reviewed: YesNRC publication: Ye

    Shifting the limits in wheat research and breeding using a fully annotated reference genome

    No full text
    Wheat is one of the major sources of food for much of the world. However, because bread wheat's genome is a large hybrid mix of three separate subgenomes, it has been difficult to produce a high-quality reference sequence. Using recent advances in sequencing, the International Wheat Genome Sequencing Consortium presents an annotated reference genome with a detailed analysis of gene content among subgenomes and the structural organization for all the chromosomes. Examples of quantitative trait mapping and CRISPR-based genome modification show the potential for using this genome in agricultural research and breeding. Ramírez-González et al. exploited the fruits of this endeavor to identify tissue-specific biased gene expression and coexpression networks during development and exposure to stress. These resources will accelerate our understanding of the genetic basis of bread wheat
    corecore