134 research outputs found

    Contemporary integrative taxonomy for sexually deprived protists: A case study of Trachelomonas (Euglenaceae) from western Ukraine

    Get PDF
    As many other protist groups, euglenophytes are prone to false identification based solely on morphology because of a limited amount of morphological features and cryptic speciation. One of the supposedly completely asexual groups within the freshwater phototrophic representatives of euglenophytes is Trachelomonas , capable of forming an inorganic shell around its cell (i.e., the lorica). The International Code of Nomenclature for algae, fungi, and plants regulates the taxonomy not only of flowering plants, but explicitly also of phototrophic protists, and provides powerful tools to resolve various taxonomic challenges. To exemplify some of the problems and potential solutions, a number of Trachelomonas strains were collected from the muddy, lake‐rich region of Dobrostany and cultivated under stable laboratory conditions. Being a type locality of 58 unclarified Trachelomonas names, this region in western Ukraine is of great taxonomic importance. Based on light and electron microscopy, and on RAxML and MrBayes phylogenetics using multiple loci and a representative taxon sample, a detailed description of investigated strains and their systematic placement is provided. Morphologically, the strains differed slightly but consistently in minute characters such as size, lorica shape and ornamentation. The presently most comprehensive molecular tree of the Euglenaceae indicated to the existence of at least five different species present in the newly investigated samples, although they were collected from localities in very close vicinity to each other and at the same date. Based on morphological comparisons with type illustrations of species validly described 100 or more years ago, biological material was used to epitypify three names of Trachelomonas , eternally linking morphology with reliable genetic information. This taxonomic application is one of the powerful methods to clarify ambiguous scientific names, which has particular importance in character‐poor protists such as the euglenophytes

    Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum , and Thalassiosira gravida

    Full text link
    Three marine diatoms, Skeletonema costatum, Chaetoceros debilis , and Thalassiosira gravida were grown under no limitation and ammonium or silicate limitation or starvation. Changes in cell morphology were documented with photomicrographs of ammonium and silicate-limited and non-limited cells, and correlated with observed changes in chemical composition. Cultures grown under silicate starvation or limitation showed an increase in particulate carbon, nitrogen and phosporus and chlorophyll a per unit cell volume compared to non-limited cells; particulate silica per cell volume decreased. Si-starved cells were different from Si-limited cells in that the former contained more particulate carbon and silica per cell volume. The most sensitive indicator of silicate limitation or starvation was the ratio C:Si, being 3 to 5 times higher than the values for non-limited cells. The ratios Si:chlorophyll a and S:P were lower and N:Si was higher than non-limited cells by a factor of 2 to 3. The other ratios, C:N, C:P, C:chlorophyll a , N:chlorophyll a , P:chlorophyll a and N:P were considered not to be sensitive indicators of silicate limitation or starvation. Chlorophyll a , and particulate nitrogen per unit cell volume decreased under ammonium limitation and starvation. NH 4 -starved cells contained more chlorophyll a , carbon, nitrogen, silica, and phosphorus per cell volume than NH 4 -limited cells. N:Si was the most sensitive ratio to ammonium limitation or starvation, being 2 to 3 times lower than non-limited cells. Si:chlorophyll a , P:chlorophyll a and N:P were less sensitive, while the ratios C:N, C:chlorophyll a , N:chlorophyll a , C:Si, C:P and Si:P were the least sensitive. Limited cells had less of the limiting nutrient per unit cell volume than starved cells and more of the non-limiting nutrients (i.e., silica and phosphorus for NH 4 -limited cells). This suggests that nutrient-limited cells rather than nutrient-starved cells should be used along with non-limited cells to measure the full range of potential change in cellular chemical composition for one species under nutrient limitation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46631/1/227_2004_Article_BF00392568.pd

    [9] Large-scale culture of algae

    No full text

    Introduction

    No full text

    Inorganic carbon acquisition in red-tide dinoflagellates

    Get PDF
    Carbon acquisition was investigated in three marine bloom-forming dinoflagellates – Prorocentrum minimum, Heterocapsa triquetra and Ceratium lineatum. In vivo activities of extracellular and intracellular carbonic anhydrase (CA), photosynthetic O2 evolution, CO2 and HCO3– uptake rates were measured by membrane inlet mass spectrometry (MIMS) in cells acclimated to low pH (8.0) and high pH (8.5 or 9.1). A second approach used short-term 14C-disequilibrium incubations to estimate the carbon source utilized by the cells. All three species showed negligible extracellular CA (eCA) activity in cells acclimated to low pH and only slightly higher activity when acclimated to high pH. Intracellular CA (iCA) activity was present in all three species, but it increased only in P. minimum with increasing pH. Half-saturation concentrations (K1/2) for photosynthetic O2 evolution were low compared to ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetics. Moreover, apparent affinities for inorganic carbon (Ci) increased with increasing pH in the acclimation, indicating the operation of an efficient CO2 concentration mechanism (CCM) in these dinoflagellates. Rates of CO2 uptake were comparably low and could not support the observed rates of photosynthesis. Consequently, rates of HCO3– uptake were high in the investigated species, contributing more than 80% of the photosynthetic carbon fixation. The affinity for HCO3– and maximum uptake rates increased under higher pH. The strong preference for HCO3– was also confirmed by the 14C-disequilibrium technique. Modes of carbon acquisition were consistent with the 13C-fractionation pattern observed and indicated a strong species-specific difference in leakage. These results suggest that photosynthesis in marine dinoflagellates is not limited by Ci even at high pH, which may occur during red tides in coastal waters
    corecore