74 research outputs found

    Neutron Moderation in the Oklo Natural Reactor and the Time Variation of alpha

    Full text link
    In the analysis of the Oklo (gabon) natural reactor to test for a possible time variation of the fine structure constant alpha, a Maxwell-Boltzmann low energy neutron spectrum was assumed. We present here an analysis where a more realistic spectrum is employed and show that the most recent isotopic analysis of samples implies a non-zero change in alpha, over the last two billion years since the reactor was operating, of \Delta\alpha/\alpha\geq 4.5\times 10^{-8} (6\sigma confidence). Issues regarding the interpretation of the shifts of the low energy neutron resonances are discussed.Comment: 7 pages, 4 figures; version 2 included reference to Flambaum/Shuryak work and corrects error in abstract version three corrects a few points and adds discussion on hydrogen and impurity concentration

    Spherical collapse with dark energy

    Full text link
    I discuss the work of Maor and Lahav [1], in which the inclusion of dark energy into the spherical collapse formalism is reviewed. Adopting a phenomenological approach, I consider the consequences of - a) allowing the dark energy to cluster, and, b) including the dark energy in the virialization process. Both of these issues affect the final state of the system in a fundamental way. The results suggest a potentially differentiating signature between a true cosmological constant and a dynamic form of dark energy. This signature is unique in the sense that it does not depend on a measurement of the value of the equation of state of dark energy.Comment: To appear in the proceedings of the ``Peyresq Physics 10" Workshop, 19 - 24 June 2005, Peyresq, Franc

    Effective field theory analysis of the self-interacting chameleon

    Full text link
    We analyse the phenomenology of a self-interacting scalar field in the context of the chameleon scenario originally proposed by Khoury and Weltman. In the absence of self-interactions, this type of scalar field can mediate long range interactions and simultaneously evade constraints from violation of the weak equivalence principle. By applying to such a scalar field the effective field theory method proposed for Einstein gravity by Goldberger and Rothstein, we give a thorough perturbative evaluation of the importance of non-derivative self-interactions in determining the strength of the chameleon mediated force in the case of orbital motion. The self-interactions are potentially dangerous as they can change the long range behaviour of the field. Nevertheless, we show that they do not lead to any dramatic phenomenological consequence with respect to the linear case and solar system constraints are fulfilled.Comment: 15 pages, 2 figures. Final version accepted for publication on General Relativity and Gravitatio

    Phase transition in Schwarzschild-de Sitter spacetime

    Full text link
    Using a static massive spherically symmetric scalar field coupled to gravity in the Schwarzschild-de Sitter (SdS) background, first we consider some asymptotic solutions near horizon and their local equations of state(E.O.S) on them. We show that near cosmological and event horizons our scalar field behaves as a dust. At the next step near two pure de-Sitter or Schwarzschild horizons we obtain a coupling dependent pressure to energy density ratio. In the case of a minimally couplling this ratio is -1 which springs to the mind thermodynamical behavior of dark energy. If having a negative pressure behavior near these horizons we concluded that the coupling constant must be ξ<1/4\xi<{1/4} >. Therefore we derive a new constraint on the value of our coupling ξ\xi . These two different behaviors of unique matter in the distinct regions of spacetime at present era can be interpreted as a phase transition from dark matter to dark energy in the cosmic scales and construct a unified scenario.Comment: 7 pages,no figures,RevTex, Typos corrected and references adde

    Dynamics of the self-interacting chameleon cosmology

    Full text link
    In this article we study the properties of the flat FRW chameleon cosmology in which the cosmic expansion of the Universe is affected by the chameleon field and dark energy. In particular, we perform a detailed examination of the model in the light of numerical analysis. The results illustrate that the interacting chameleon filed plays an important role in late time universe acceleration and phantom crossing.Comment: 13 pages, 8 figures, to appear in Astrophysics and Space Sc

    Chameleonic Generalized Brans--Dicke model and late-time acceleration

    Full text link
    In this paper we consider Chameleonic Generalized Brans--Dicke Cosmology in the framework of FRW universes. The bouncing solution and phantom crossing is investigated for the model. Two independent cosmological tests: Cosmological Redshift Drift (CRD) and distance modulus are applied to test the model with the observation.Comment: 20 pages, 15 figures, to be published in Astrophys. Space Sci. (2011

    Accelerated expansion from braneworld models with variable vacuum energy

    Full text link
    In braneworld models a variable vacuum energy may appear if the size of the extra dimension changes during the evolution of the universe. In this scenario the acceleration of the universe is related not only to the variation of the cosmological term, but also to the time evolution of GG and, possibly, to the variation of other fundamental "constants" as well. This is because the expansion rate of the extra dimension appears in different contexts, notably in expressions concerning the variation of rest mass and electric charge. We concentrate our attention on spatially-flat, homogeneous and isotropic, brane-universes where the matter density decreases as an inverse power of the scale factor, similar (but at different rate) to the power law in FRW-universes of general relativity. We show that these braneworld cosmologies are consistent with the observed accelerating universe and other observational requirements. In particular, GG becomes constant and Λ(4)const×H2\Lambda_{(4)} \approx const \times H^2 asymptotically in time. Another important feature is that the models contain no "adjustable" parameters. All the quantities, even the five-dimensional ones, can be evaluated by means of measurements in 4D. We provide precise constrains on the cosmological parameters and demonstrate that the "effective" equation of state of the universe can, in principle, be determined by measurements of the deceleration parameter alone. We give an explicit expression relating the density parameters Ωρ\Omega_{\rho}, ΩΛ\Omega_{\Lambda} and the deceleration parameter qq. These results constitute concrete predictions that may help in observations for an experimental/observational test of the model.Comment: References added, typos correcte

    Linear and non-linear perturbations in dark energy models

    Full text link
    I review the linear and second-order perturbation theory in dark energy models with explicit interaction to matter in view of applications to N-body simulations and non-linear phenomena. Several new or generalized results are obtained: the general equations for the linear perturbation growth; an analytical expression for the bias induced by a species-dependent interaction; the Yukawa correction to the gravitational potential due to dark energy interaction; the second-order perturbation equations in coupled dark energy and their Newtonian limit. I also show that a density-dependent effective dark energy mass arises if the dark energy coupling is varying.Comment: 12 pages, submitted to Phys. Rev; v2: added a ref. and corrected a typ

    Unifying inflation with dark energy in modified F(R) Horava-Lifshitz gravity

    Full text link
    We study FRW cosmology for a non-linear modified F(R) Horava-Lifshitz gravity which has a viable convenient counterpart. A unified description of early-time inflation and late-time acceleration is possible in this theory, but the cosmological dynamic details are generically different from the ones of the convenient viable F(R) model. Remarkably, for some specific choice of parameters they do coincide. The emergence of finite-time future singularities is investigated in detail. It is shown that these singularities can be cured by adding an extra, higher-derivative term, which turns out to be qualitatively different when compared with the corresponding one of the convenient F(R) theory.Comment: LaTeX 12 pages, typos are correcte

    Bianchi Type III Anisotropic Dark Energy Models with Constant Deceleration Parameter

    Full text link
    The Bianchi type III dark energy models with constant deceleration parameter are investigated. The equation of state parameter ω\omega is found to be time dependent and its existing range for this model is consistent with the recent observations of SN Ia data, SN Ia data (with CMBR anisotropy) and galaxy clustering statistics. The physical aspect of the dark energy models are discussed.Comment: 12 pages, 2 figures, Accepted version of IJT
    corecore