843 research outputs found
Lovelock inflation and the number of large dimensions
We discuss an inflationary scenario based on Lovelock terms. These higher
order curvature terms can lead to inflation when there are more than three
spatial dimensions. Inflation will end if the extra dimensions are stabilised,
so that at most three dimensions are free to expand. This relates graceful exit
to the number of large dimensions.Comment: 16 pages, 1 figure. v2: published version, added clarification
Quantum Measurements and the kappa--Poincare Group
The possible description of the vacuum of quantum gravity through the so
called kappa--Poincare group is analyzed considering some of the consequences
of this symmetry in the path integral formulation of nonrelativistic quantum
theory. This study is carried out with two cases, firstly, a free particle, and
finally, the situation of a particle immersed in a homogeneous gravitational
field. It will be shown that the kappa--Poincare group implies the loss of some
of the basic properties associated to Feynman's path integral. For instance,
loss of the group characteristic related to the time dependence of the
evolution operator, or the breakdown of the composition law for amplitudes of
events occurring successively in time. Additionally some similarities between
the present idea and the so called restricted path integral formalism will be
underlined. These analogies advocate the claim that if the kappa--Poincare
group contains some of the physical information of the quantum gravity vacuum,
then this vacuum could entail decoherence. This last result will also allow us
to consider the possibility of analyzing the continuous measurement problem of
quantum theory from a group--theoretical point of view, but now taking into
account the kappa--Poincare symmetries.Comment: Accepted in General Relativity and Gravitation. Dedicated to Alberto
Garcia on the occasion of his 60th. birthda
Differential Cross Section for Higgs Boson Production Including All-Orders Soft Gluon Resummation
The transverse momentum distribution is computed for inclusive Higgs
boson production at the energy of the CERN Large Hadron Collider. We focus on
the dominant gluon-gluon subprocess in perturbative quantum chromodynamics and
incorporate contributions from the quark-gluon and quark-antiquark channels.
Using an impact-parameter -space formalism, we include all-orders
resummation of large logarithms associated with emission of soft gluons. Our
resummed results merge smoothly at large with the fixed-order
expectations in perturbative quantum chromodynamics, as they should, with no
need for a matching procedure. They show a high degree of stability with
respect to variation of parameters associated with the non-perturbative input
at low . We provide distributions for Higgs boson masses
from to 200 GeV. The average transverse momentum at zero rapidity
grows approximately linearly with mass of the Higgs boson over the range ~GeV. We provide analogous results
for boson production, for which we compute GeV. The
harder transverse momentum distribution for the Higgs boson arises because
there is more soft gluon radiation in Higgs boson production than in
production.Comment: 42 pages, latex, 26 figures. All figures replaced. Some changes in
wording. Published in Phys. Rev. D67, 034026 (2003
Long Cycles in a Perturbed Mean Field Model of a Boson Gas
In this paper we give a precise mathematical formulation of the relation
between Bose condensation and long cycles and prove its validity for the
perturbed mean field model of a Bose gas. We decompose the total density
into the number density of
particles belonging to cycles of finite length () and to
infinitely long cycles () in the thermodynamic limit. For
this model we prove that when there is Bose condensation,
is different from zero and identical to the condensate density. This is
achieved through an application of the theory of large deviations. We discuss
the possible equivalence of with off-diagonal long
range order and winding paths that occur in the path integral representation of
the Bose gas.Comment: 10 page
Unusual morphologies and the occurrence of pseudomorphs after ikaite (CaCO3âą6H2O) in fast growing, hyperalkaline speleothem
Unusual speleothem, associated with hyperalkaline (pH>12) groundwaters have formed within a shallow, abandoned railway tunnel at Peak Dale, Derbyshire, UK. The hyperalkaline groundwaters are produced by the leaching of a thin layer (<2 m) of old lime kiln waste above the soil-bedrock surface above the tunnel by rainwater. This results in a different reaction and chemical process to that more commonly associated with the formation of calcium carbonate speleothems from Ca-HCO3-type groundwaters and degassing of CO2. Stalagmites within the Peak Dale tunnel have grown rapidly (averaging 33 mm y-1), following the closure of the tunnel 70 years ago. They have an unusual morphology comprising a central sub-horizontally-laminated column of micro- to nano-crystalline calcium carbonate encompassed by an outer sub-vertical assymetric ripple laminated layer. The stalagmites are largely composed of secondary calcite forming pseudomorphs (<1 mm) which we believe to be predominantly after the âcold climateâ calcium carbonate polymorph, ikaite (calcium carbonate hexahydrate: CaCO3âą6H2O), with minor volumes of small (<5 ÎŒm) pseudomorphs after vaterite. The tunnel has a near constant temperature of 8-9°C which is slightly above the previously published crystallisation temperatures for ikaite (<6°C). Analysis of a stalagmite actively growing at the time of sampling, and preserved immediately within a dry nitrogen cryogenic vessel, indicates that following crystallisation of ikaite, decomposition to calcite occurs rapidly, if not instantaneously. We believe this is the first occurrence of this calcium carbonate polymorph observed within speleothem
Scalar and Pseudoscalar Higgs Boson Plus One Jet Production at the LHC and Tevatron
The production of the Standard Model (SM) Higgs boson (H) in association with
a jet is compared with that of the lightest scalar Higgs boson (h^0) and the
pseudoscalar Higgs boson (A^0) of the Minimal Supersymmetric Model (MSSM) at
both the CERN Large Hadron Collider (LHC) and the Fermilab Tevatron. We include
both top and bottom quark loops to lowest order in QCD and investigate the
limits of zero quark mass and infinite quark mass.Comment: 14 pages, REVTeX4, 14 eps figures v2: Version accepted for
publication in PR
Next-to-leading Corrections to the Higgs Boson Transverse Momentum Spectrum in Gluon Fusion
We present a fully analytic calculation of the Higgs boson transverse
momentum and rapidity distributions, for nonzero Higgs , at
next-to-leading order in the infinite-top-mass approximation. We separate the
cross section into a part that contains the dominant soft, virtual, collinear,
and small--enhanced contributions, and the remainder, which is
organized by the contributions due to different parton helicities. We use this
cross section to investigate analytically the small- limit and compare
with the expectation from the resummation of large logarithms of the type
. We also compute numerically the cross section at moderate
where a fixed-order calculation is reliable. We find a -factor
that varies from , and a reduction in the scale dependence, as
compared to leading order. Our analysis suggests that the contribution of
current parton distributions to the total uncertainty on this cross section at
the LHC is probably less than that due to uncalculated higher orders.Comment: 40 pages, 10 figures, JHEP style (minor changes, added reference
Weisskopf-Wigner Decay Theory for the Energy-Driven Stochastic Schr\"odinger Equation
We generalize the Weisskopf-Wigner theory for the line shape and transition
rates of decaying states to the case of the energy-driven stochastic
Schr\"odinger equation that has been used as a phenomenology for state vector
reduction. Within the standard approximations used in the Weisskopf-Wigner
analysis, and assuming that the perturbing potential inducing the decay has
vanishing matrix elements within the degenerate manifold containing the
decaying state, the stochastic Schr\"odinger equation linearizes. Solving the
linearized equations, we find no change from the standard analysis in the line
shape or the transition rate per unit time. The only effect of the stochastic
terms is to alter the early time transient behavior of the decay, in a way that
eliminates the quantum Zeno effect. We apply our results to estimate
experimental bounds on the parameter governing the stochastic effects.Comment: 29 pages in RevTeX, Added Note, references adde
Non-perturbative effects and the resummed Higgs transverse momentum distribution at the LHC
We investigate the form of the non-perturbative parameterization in both the
impact parameter (b) space and transverse momentum (p_T) space resummation
formalisms for the transverse momentum distribution of single massive bosons
produced at hadron colliders. We propose to analyse data on Upsilon
hadroproduction as a means of studying the non-perturbative contribution in
processes with two gluons in the initial state. We also discuss the theoretical
errors on the resummed Higgs transverse momentum distribution at the LHC
arising from the non-perturbative contribution.Comment: 22 pages, 10 figure
Soft and virtual corrections to pp -> H + X at NNLO
The contributions of virtual corrections and soft gluon emission to the
inclusive Higgs production cross section pp -> H + X are computed at
next-to-next-to-leading order in the heavy top quark limit. We show that this
part of the total cross section is well behaved in the sense of perturbative
convergence, with the NNLO corrections amounting to an enhancement of the NLO
cross section by \sim 5% for LHC and 10-20% for the Tevatron. We compare our
results with an existing estimate of the full NNLO effects and argue that an
analytic evaluation of the hard scattering contributions is needed.Comment: 16 pages, 7 figures, 16 ps files embedded with epsf. Minor
modifications: references and note added, results unchange
- âŠ