2,873 research outputs found

    A visual demonstration of convergence properties of cooperative coevolution

    Get PDF
    We introduce a model for cooperative coevolutionary algorithms (CCEAs) using partial mixing, which allows us to compute the expected long-run convergence of such algorithms when individuals ’ fitness is based on the maximum payoff of some N evaluations with partners chosen at random from the other population. Using this model, we devise novel visualization mechanisms to attempt to qualitatively explain a difficult-to-conceptualize pathology in CCEAs: the tendency for them to converge to suboptimal Nash equilibria. We further demonstrate visually how increasing the size of N, or biasing the fitness to include an ideal-collaboration factor, both improve the likelihood of optimal convergence, and under which initial population configurations they are not much help

    An assessment of pulse transit time for detecting heavy blood loss during surgical operation

    Get PDF
    Copyright @ Wang et al.; Licensee Bentham Open. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.The main contribution of this paper is the use of non-invasive measurements such as electrocardiogram (ECG) and photoplethysmographic (PPG) pulse oximetry waveforms to develop a new physiological signal analysis technique for detecting blood loss during surgical operation. Urological surgery cases were considered as the control group due to its generality, and cardiac surgery as experimental group since it involves blood loss and water supply. Results show that the control group has the tendency of a reduction of the pulse transient time (PTT), and this indicates an increment in the blood flow velocity changes from slow to fast. While for the experimental group, the PTT indicates high values during blood loss, and low values during water supply. Statistical analysis shows considerable differences (i.e., P <0.05) between both groups leading to the conclusion that PTT could be a good indicator for monitoring patients' blood loss during a surgical operation.The National Science Council (NSC) of Taiwan and the Centre for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan

    Supporting 'design for reuse' with modular design

    Get PDF
    Engineering design reuse refers to the utilization of any knowledge gained from the design activity to support future design. As such, engineering design reuse approaches are concerned with the support, exploration, and enhancement of design knowledge prior, during, and after a design activity. Modular design is a product structuring principle whereby products are developed with distinct modules for rapid product development, efficient upgrades, and possible reuse (of the physical modules). The benefits of modular design center on a greater capacity for structuring component parts to better manage the relation between market requirements and the designed product. This study explores the capabilities of modular design principles to provide improved support for the engineering design reuse concept. The correlations between modular design and 'reuse' are highlighted, with the aim of identifying its potential to aid the little-supported process of design for reuse. In fulfilment of this objective the authors not only identify the requirements of design for reuse, but also propose how modular design principles can be extended to support design for reuse

    Scalar and Pseudoscalar Higgs Boson Plus One Jet Production at the LHC and Tevatron

    Full text link
    The production of the Standard Model (SM) Higgs boson (H) in association with a jet is compared with that of the lightest scalar Higgs boson (h^0) and the pseudoscalar Higgs boson (A^0) of the Minimal Supersymmetric Model (MSSM) at both the CERN Large Hadron Collider (LHC) and the Fermilab Tevatron. We include both top and bottom quark loops to lowest order in QCD and investigate the limits of zero quark mass and infinite quark mass.Comment: 14 pages, REVTeX4, 14 eps figures v2: Version accepted for publication in PR

    Fluctuations and Dissipation of Coherent Magnetization

    Full text link
    A quantum mechanical model is used to derive a generalized Landau-Lifshitz equation for a magnetic moment, including fluctuations and dissipation. The model reproduces the Gilbert-Brown form of the equation in the classical limit. The magnetic moment is linearly coupled to a reservoir of bosonic degrees of freedom. Use of generalized coherent states makes the semiclassical limit more transparent within a path-integral formulation. A general fluctuation-dissipation theorem is derived. The magnitude of the magnetic moment also fluctuates beyond the Gaussian approximation. We discuss how the approximate stochastic description of the thermal field follows from our result. As an example, we go beyond the linear-response method and show how the thermal fluctuations become anisotropy-dependent even in the uniaxial case.Comment: 22 page

    Studies of Neutron Stars at Optical/IR Wavelengths

    Get PDF
    In the last years, optical studies of Isolated Neutron Stars (INSs) have expanded from the more classical rotation-powered ones to other categories, like the Anomalous X-ray Pulsars (AXPs) and the Soft Gamma-ray Repeaters (SGRs), which make up the class of the magnetars, the radio-quiet INSs with X-ray thermal emission and, more recently, the enigmatic Compact Central Objects (CCOs) in supernova remnants. Apart from 10 rotation-powered pulsars, so far optical/IR counterparts have been found for 5 magnetars and for 4 INSs. In this work we present some of the latest observational results obtained from optical/IR observations of different types of INSs

    Orientations of LASCO Halo CMEs and Their Connection to the Flux Rope Structure of Interplanetary CMEs

    Full text link
    Coronal mass ejections (CMEs) observed near the Sun via LASCO coronographic imaging are the most important solar drivers of geomagnetic storms. ICMEs, their interplanetary, near-Earth counterparts, can be detected in-situ, for example, by the Wind and ACE spacecraft. An ICME usually exhibits a complex structure that very often includes a magnetic cloud (MC). They can be commonly modelled as magnetic flux ropes and there is observational evidence to expect that the orientation of a halo CME elongation corresponds to the orientation of the flux rope. In this study, we compare orientations of elongated CME halos and the corresponding MCs, measured by Wind and ACE spacecraft. We characterize the MC structures by using the Grad-Shafranov reconstruction technique and three MC fitting methods to obtain their axis directions. The CME tilt angles and MC fitted axis angles were compared without taking into account handedness of the underlying flux rope field and the polarity of its axial field. We report that for about 64% of CME-MC events, we found a good correspondence between the orientation angles implying that for the majority of interplanetary ejecta their orientations do not change significantly (less than 45 deg rotation) while travelling from the Sun to the near Earth environment

    High-Energy Aspects of Solar Flares: Overview of the Volume

    Full text link
    In this introductory chapter, we provide a brief summary of the successes and remaining challenges in understanding the solar flare phenomenon and its attendant implications for particle acceleration mechanisms in astrophysical plasmas. We also provide a brief overview of the contents of the other chapters in this volume, with particular reference to the well-observed flare of 2002 July 23Comment: This is the introductory article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Ab-initio calculation of Kerr spectra for semi-infinite systems including multiple reflections and optical interferences

    Full text link
    Based on Luttinger's formulation the complex optical conductivity tensor is calculated within the framework of the spin-polarized relativistic screened Korringa-Kohn-Rostoker method for layered systems by means of a contour integration technique. For polar geometry and normal incidence ab-initio Kerr spectra of multilayer systems are then obtained by including via a 2x2 matrix technique all multiple reflections between layers and optical interferences in the layers. Applications to Co|Pt5 and Pt3|Co|Pt5 on the top of a semi-infinite fcc-Pt(111) bulk substrate show good qualitative agreement with the experimental spectra, but differ from those obtained by applying the commonly used two-media approach.Comment: 32 pages (LaTeX), 5 figures (Encapsulated PostScript), submitted to Phys. Rev.
    • …
    corecore