53 research outputs found

    Integral Field Spectrographs: a user's view

    Full text link
    We easily tend to think of Integral-Field Spectrographs (IFS) along two opposing trends: as either the beautiful combination between photometry and spectroscopy, or as our worst nightmare including the dark side of both worlds. I favour a view where each IFS is considered individually, as one instrument with specific performances which can be used optimally for a certain range of scientific programs. It is indeed true that data-wise, IFS do sometime merge the characteristics of classic (e.g., long-slit) spectrographs with annoying issues associated with Imagers. This is in fact the price to pay to access a drastically different perspective of our favourite targets. The challenge is then to provide the necessary tools to properly handle the corresponding data. However, this should certainly not be thought as something specific to IFS: such a challenge should be accepted for any instrument, and most importantly solved prior to its delivery at the telescope.Comment: 6 pages, 2 figures. Invited talk, to appear in the Proceedings of "The 2007 ESO Instrument Calibration Workshop", ESO Astrophysics Symposia, Springe

    Counting Popular Matchings in House Allocation Problems

    Full text link
    We study the problem of counting the number of popular matchings in a given instance. A popular matching instance consists of agents A and houses H, where each agent ranks a subset of houses according to their preferences. A matching is an assignment of agents to houses. A matching M is more popular than matching M' if the number of agents that prefer M to M' is more than the number of people that prefer M' to M. A matching M is called popular if there exists no matching more popular than M. McDermid and Irving gave a poly-time algorithm for counting the number of popular matchings when the preference lists are strictly ordered. We first consider the case of ties in preference lists. Nasre proved that the problem of counting the number of popular matching is #P-hard when there are ties. We give an FPRAS for this problem. We then consider the popular matching problem where preference lists are strictly ordered but each house has a capacity associated with it. We give a switching graph characterization of popular matchings in this case. Such characterizations were studied earlier for the case of strictly ordered preference lists (McDermid and Irving) and for preference lists with ties (Nasre). We use our characterization to prove that counting popular matchings in capacitated case is #P-hard

    The SAURON project ā€“ XVII. Stellar population analysis of the absorption line strength maps of 48 early-type galaxies

    Get PDF
    The definitive version can be found at: http://onlinelibrary.wiley.com/ Copyright Royal Astronomical SocietyWe present a stellar population analysis of the absorption line strength maps for 48 early-type galaxies from the SAURON sample. Using the line strength index maps of HĪ², Fe5015 and Mg b, measured in the Lick/IDS system and spatially binned to a constant signal-to-noise ratio, together with predictions from up-to-date stellar population models, we estimate the simple stellar population-equivalent (SSP-equivalent) age, metallicity and abundance ratio [Ī±/Fe] over a two-dimensional field extending up to approximately one effective radius. A discussion of calibrations and differences between model predictions is given. Maps of SSP-equivalent age, metallicity and abundance ratio [Ī±/Fe] are presented for each galaxy. We find a large range of SSP-equivalent ages in our sample, of which āˆ¼40 per cent of the galaxies show signs of a contribution from a young stellar population. The most extreme cases of post-starburst galaxies, with SSP-equivalent ages of ā‰¤3 Gyr observed over the full field-of-view, and sometimes even showing signs of residual star formation, are restricted to low-mass systems (Ļƒeā‰¤ 100 km sāˆ’1 or āˆ¼2 Ɨ 1010 MāŠ™). Spatially restricted cases of young stellar populations in circumnuclear regions can almost exclusively be linked to the presence of star formation in a thin, dusty disc/ring, also seen in the near-UV or mid-IR on top of an older underlying stellar population. The flattened components with disc-like kinematics previously identified in all fast rotators are shown to be connected to regions of distinct stellar populations. These range from the young, still star-forming circumnuclear discs and rings with increased metallicity preferentially found in intermediate-mass fast rotators, to apparently old structures with extended disc-like kinematics, which are observed to have an increased metallicity and mildly depressed [Ī±/Fe] ratio compared to the main body of the galaxy. The slow rotators, often harbouring kinematically decoupled components (KDC) in their central regions, generally show no stellar population signatures over and above the well-known metallicity gradients in early-type galaxies and are largely consistent with old (ā‰„10 Gyr) stellar populations. Using radially averaged stellar population gradients we find in agreement with Spolaor et al. a massā€“metallicity gradient relation where low-mass fast rotators form a sequence of increasing metallicity gradient with increasing mass. For more massive systems (above āˆ¼3.5 Ɨ 1010 MāŠ™) there is an overall downturn such that metallicity gradients become shallower with increased scatter at a given mass leading to the most massive systems being slow rotators with relatively shallow metallicity gradients. The observed shallower metallicity gradients and increased scatter could be a consequence of the competition between different star formation and assembly scenarios following a general trend of diminishing gas fractions and more equal-mass mergers with increasing mass, leading to the most massive systems being devoid of ordered motion and signs of recent star formation.Peer reviewe

    Popular matchings in the marriage and roommates problems

    Get PDF
    Popular matchings have recently been a subject of study in the context of the so-called House Allocation Problem, where the objective is to match applicants to houses over which the applicants have preferences. A matching M is called popular if there is no other matching Mā€² with the property that more applicants prefer their allocation in Mā€² to their allocation in M. In this paper we study popular matchings in the context of the Roommates Problem, including its special (bipartite) case, the Marriage Problem. We investigate the relationship between popularity and stability, and describe efficient algorithms to test a matching for popularity in these settings. We also show that, when ties are permitted in the preferences, it is NP-hard to determine whether a popular matching exists in both the Roommates and Marriage cases

    AT 2017gbl: A dust obscured TDE candidate in a luminous infrared galaxy

    Get PDF
    We present the discovery with Keck of the extremely infrared (IR) luminous transient AT 2017gbl, coincident with the Northern nucleus of the luminous infrared galaxy (LIRG) IRAS 23436+5257. Our extensive multiwavelength follow-up spans āˆ¼900 d, including photometry and spectroscopy in the optical and IR, and (very long baseline interferometry) radio and X-ray observations. Radiative transfer modelling of the host galaxy spectral energy distribution and long-term pre-outburst variability in the mid-IR indicate the presence of a hitherto undetected dust obscured active galactic nucleus (AGN). The optical and near-IR spectra show broad āˆ¼2000 km s-1 hydrogen, He i, and O i emission features that decrease in flux over time. Radio imaging shows a fast evolving compact source of synchrotron emission spatially coincident with AT 2017gbl. We infer a lower limit for the radiated energy of 7.3 Ɨ 1050 erg from the IR photometry. An extremely energetic supernova would satisfy this budget, but is ruled out by the radio counterpart evolution. Instead, we propose AT 2017gbl is related to an accretion event by the central supermassive black hole, where the spectral signatures originate in the AGN broad line region and the IR photometry is consistent with re-radiation by polar dust. Given the fast evolution of AT 2017gbl, we deem a tidal disruption event (TDE) of a star a more plausible scenario than a dramatic change in the AGN accretion rate. This makes AT 2017gbl the third TDE candidate to be hosted by a LIRG, in contrast to the so far considered TDE population discovered at optical wavelengths and hosted preferably by post-starburst galaxies

    The SAMI Galaxy Survey: Data Release One with emission-line physics value-added products

    Get PDF
    We present the first major release of data from the SAMI Galaxy Survey. This data release focuses on the emission-line physics of galaxies. Data Release One includes data for 772 galaxies, about 20 per cent of the full survey. Galaxies included have the redshift range 0.004 < z < 0.092, a large mass range (7.6 < logM*/MāŠ™ < 11.6), and star formation rates of ~10-4 to ~101MāŠ™ yr-1. For each galaxy, we include two spectral cubes and a set of spatially resolved 2D maps: single- and multi-component emission-line fits (with dust-extinction corrections for strong lines), local dust extinction, and star formation rate. Calibration of the fibre throughputs, fluxes, and differential atmospheric refraction has been improved over the Early Data Release. The data have average spatial resolution of 2.16 arcsec (full width at half-maximum) over the 15 arcsec diameter field of view and spectral (kinematic) resolution of R = 4263 (Ļƒ = 30 km s-1) around Ha. The relative flux calibration is better than 5 per cent, and absolute flux calibration has an rms of 10 per cent. The data are presented online through the Australian Astronomical Observatory's Data Central
    • ā€¦
    corecore