374 research outputs found
Control of black hole evaporation?
Contradiction between Hawking's semi-classical arguments and string theory on
the evaporation of black hole has been one of the most intriguing problems in
fundamental physics. A final-state boundary condition inside the black hole was
proposed by Horowitz and Maldacena to resolve this contradiction. We point out
that original Hawking effect can be also regarded as a separate boundary
condition at the event horizon for this scenario. Here, we found that the
change of Hawking boundary condition may affect the information transfer from
the initial collapsing matter to the outgoing Hawking radiation during
evaporation process and as a result the evaporation process itself,
significantly.Comment: Journal of High Energy Physics, to be publishe
Black holes and Hawking radiation in spacetime and its analogues
These notes introduce the fundamentals of black hole geometry, the thermality
of the vacuum, and the Hawking effect, in spacetime and its analogues.
Stimulated emission of Hawking radiation, the trans-Planckian question, short
wavelength dispersion, and white hole radiation in the setting of analogue
models are also discussed. No prior knowledge of differential geometry, general
relativity, or quantum field theory in curved spacetime is assumed.Comment: 31 pages, 9 figures; to appear in the proceedings of the IX SIGRAV
School on 'Analogue Gravity', Como (Italy), May 2011, eds. D. Faccio et. al.
(Springer
Quantum field theory on a growing lattice
We construct the classical and canonically quantized theories of a massless
scalar field on a background lattice in which the number of points--and hence
the number of modes--may grow in time. To obtain a well-defined theory certain
restrictions must be imposed on the lattice. Growth-induced particle creation
is studied in a two-dimensional example. The results suggest that local mode
birth of this sort injects too much energy into the vacuum to be a viable model
of cosmological mode birth.Comment: 28 pages, 2 figures; v.2: added comments on defining energy, and
reference
Black Hole Entropy is Noether Charge
We consider a general, classical theory of gravity in dimensions, arising
from a diffeomorphism invariant Lagrangian. In any such theory, to each vector
field, , on spacetime one can associate a local symmetry and, hence, a
Noether current -form, , and (for solutions to the field
equations) a Noether charge -form, . Assuming only that the
theory admits stationary black hole solutions with a bifurcate Killing horizon,
and that the canonical mass and angular momentum of solutions are well defined
at infinity, we show that the first law of black hole mechanics always holds
for perturbations to nearby stationary black hole solutions. The quantity
playing the role of black hole entropy in this formula is simply times
the integral over of the Noether charge -form associated with
the horizon Killing field, normalized so as to have unit surface gravity.
Furthermore, we show that this black hole entropy always is given by a local
geometrical expression on the horizon of the black hole. We thereby obtain a
natural candidate for the entropy of a dynamical black hole in a general theory
of gravity. Our results show that the validity of the ``second law" of black
hole mechanics in dynamical evolution from an initially stationary black hole
to a final stationary state is equivalent to the positivity of a total Noether
flux, and thus may be intimately related to the positive energy properties of
the theory. The relationship between the derivation of our formula for black
hole entropy and the derivation via ``Euclidean methods" also is explained.Comment: 16 pages, EFI 93-4
Generally covariant model of a scalar field with high frequency dispersion and the cosmological horizon problem
Short distance structure of spacetime may show up in the form of high
freqency dispersion. Although such dispersion is not locally Lorentz invariant,
we show in a scalar field model how it can nevertheless be incorporated into a
generally covariant metric theory of gravity provided the locally preferred
frame is dynamical. We evaluate the resulting energy-momentum tensor and
compute its expectation value for a quantum field in a thermal state. The
equation of state differs at high temperatures from the usual one, but not by
enough to impact the problems of a hot big bang cosmology. We show that a
superluminal dispersion relation can solve the horizon problem via superluminal
equilibration, however it cannot do so while remaining outside the Planck
regime unless the dispersion relation is artificially chosen to have a rather
steep dependence on wavevector.Comment: 4 pages, 1 figure; New section added with discussion of solution to
the cosmological horizon problem using superluminal dispersion, title changed
to reflect new content, various additional minor change
Hawking Spectrum and High Frequency Dispersion
We study the spectrum of created particles in two-dimensional black hole
geometries for a linear, hermitian scalar field satisfying a Lorentz
non-invariant field equation with higher spatial derivative terms that are
suppressed by powers of a fundamental momentum scale . The preferred frame
is the ``free-fall frame" of the black hole. This model is a variation of
Unruh's sonic black hole analogy. We find that there are two qualitatively
different types of particle production in this model: a thermal Hawking flux
generated by ``mode conversion" at the black hole horizon, and a non-thermal
spectrum generated via scattering off the background into negative free-fall
frequency modes. This second process has nothing to do with black holes and
does not occur for the ordinary wave equation because such modes do not
propagate outside the horizon with positive Killing frequency. The horizon
component of the radiation is astonishingly close to a perfect thermal
spectrum: for the smoothest metric studied, with Hawking temperature
, agreement is of order at frequency
, and agreement to order persists out to
where the thermal number flux is ). The flux
from scattering dominates at large and becomes many orders of
magnitude larger than the horizon component for metrics with a ``kink", i.e. a
region of high curvature localized on a static worldline outside the horizon.
This non-thermal flux amounts to roughly 10\% of the total luminosity for the
kinkier metrics considered. The flux exhibits oscillations as a function of
frequency which can be explained by interference between the various
contributions to the flux.Comment: 32 pages, plain latex, 16 figures included using psfi
Black Hole Evaporation in the Presence of a Short Distance Cutoff
A derivation of the Hawking effect is given which avoids reference to field
modes above some cutoff frequency in the free-fall frame
of the black hole. To avoid reference to arbitrarily high frequencies, it is
necessary to impose a boundary condition on the quantum field in a timelike
region near the horizon, rather than on a (spacelike) Cauchy surface either
outside the horizon or at early times before the horizon forms. Due to the
nature of the horizon as an infinite redshift surface, the correct boundary
condition at late times outside the horizon cannot be deduced, within the
confines of a theory that applies only below the cutoff, from initial
conditions prior to the formation of the hole. A boundary condition is
formulated which leads to the Hawking effect in a cutoff theory. It is argued
that it is possible the boundary condition is {\it not} satisfied, so that the
spectrum of black hole radiation may be significantly different from that
predicted by Hawking, even without the back-reaction near the horizon becoming
of order unity relative to the curvature.Comment: 35 pages, plain LaTeX, UMDGR93-32, NSF-ITP-93-2
Lodged in the throat: Internal infinities and AdS/CFT
In the context of AdS3/CFT2, we address spacetimes with a certain sort of
internal infinity as typified by the extreme BTZ black hole. The internal
infinity is a null circle lying at the end of the black hole's infinite throat.
We argue that such spacetimes may be described by a product CFT of the form
CFT-L * CFT-R, where CFT-R is associated with the asymptotically AdS boundary
while CFT-L is associated with the null circle. Our particular calculations
analyze the CFT dual of the extreme BTZ black hole in a linear toy model of
AdS3/CFT2. Since the BTZ black hole is a quotient of AdS3, the dual CFT state
is a corresponding quotient of the CFT vacuum state. This state turns out to
live in the aforementioned product CFT. We discuss this result in the context
of general issues of AdS/CFT duality and entanglement entropy.Comment: 11 pages, 2 figures; v2 - some typos corrected, minor revision
Quantum vacuum fluctuations and dark energy
It is shown that the curvature of space-time induced by vacuum fluctuations
of quantum fields should be proportional to the square of Newton's constant
. This offers a possible explanation for the success of the approximation for the dark energy density, with being a typical mass of
elementary particles.Comment: Changed conten
On the Status of Highly Entropic Objects
It has been proposed that the entropy of any object must satisfy fundamental
(holographic or Bekenstein) bounds set by the object's size and perhaps its
energy. However, most discussions of these bounds have ignored the possibility
that objects violating the putative bounds could themselves become important
components of Hawking radiation. We show that this possibility cannot a priori
be neglected in existing derivations of the bounds. Thus this effect could
potentially invalidate these derivations; but it might also lead to
observational evidence for the bounds themselves.Comment: 6 pages, RevTex, a few editorial change
- …