85 research outputs found

    What is the Oxygen Isotope Composition of Venus? The Scientific Case for Sample Return from Earth’s “Sister” Planet

    Get PDF
    Venus is Earth’s closest planetary neighbour and both bodies are of similar size and mass. As a consequence, Venus is often described as Earth’s sister planet. But the two worlds have followed very different evolutionary paths, with Earth having benign surface conditions, whereas Venus has a surface temperature of 464 °C and a surface pressure of 92 bar. These inhospitable surface conditions may partially explain why there has been such a dearth of space missions to Venus in recent years.The oxygen isotope composition of Venus is currently unknown. However, this single measurement (Δ17O) would have first order implications for our understanding of how large terrestrial planets are built. Recent isotopic studies indicate that the Solar System is bimodal in composition, divided into a carbonaceous chondrite (CC) group and a non-carbonaceous (NC) group. The CC group probably originated in the outer Solar System and the NC group in the inner Solar System. Venus comprises 41% by mass of the inner Solar System compared to 50% for Earth and only 5% for Mars. Models for building large terrestrial planets, such as Earth and Venus, would be significantly improved by a determination of the Δ17O composition of a returned sample from Venus. This measurement would help constrain the extent of early inner Solar System isotopic homogenisation and help to identify whether the feeding zones of the terrestrial planets were narrow or wide.Determining the Δ17O composition of Venus would also have significant implications for our understanding of how the Moon formed. Recent lunar formation models invoke a high energy impact between the proto-Earth and an inner Solar System-derived impactor body, Theia. The close isotopic similarity between the Earth and Moon is explained by these models as being a consequence of high-temperature, post-impact mixing. However, if Earth and Venus proved to be isotopic clones with respect to Δ17O, this would favour the classic, lower energy, giant impact scenario.We review the surface geology of Venus with the aim of identifying potential terrains that could be targeted by a robotic sample return mission. While the potentially ancient tessera terrains would be of great scientific interest, the need to minimise the influence of venusian weathering favours the sampling of young basaltic plains. In terms of a nominal sample mass, 10 g would be sufficient to undertake a full range of geochemical, isotopic and dating studies. However, it is important that additional material is collected as a legacy sample. As a consequence, a returned sample mass of at least 100 g should be recovered.Two scenarios for robotic sample return missions from Venus are presented, based on previous mission proposals. The most cost effective approach involves a “Grab and Go” strategy, either using a lander and separate orbiter, or possibly just a stand-alone lander. Sample return could also be achieved as part of a more ambitious, extended mission to study the venusian atmosphere. In both scenarios it is critical to obtain a surface atmospheric sample to define the extent of atmosphere-lithosphere oxygen isotopic disequilibrium. Surface sampling would be carried out by multiple techniques (drill, scoop, “vacuum-cleaner” device) to ensure success. Surface operations would take no longer than one hour.Analysis of returned samples would provide a firm basis for assessing similarities and differences between the evolution of Venus, Earth, Mars and smaller bodies such as Vesta. The Solar System provides an important case study in how two almost identical bodies, Earth and Venus, could have had such a divergent evolution. Finally, Venus, with its runaway greenhouse atmosphere, may provide data relevant to the understanding of similar less extreme processes on Earth. Venus is Earth’s planetary twin and deserves to be better studied and understood. In a wider context, analysis of returned samples from Venus would provide data relevant to the study of exoplanetary systems

    "Migrants, States, and EU Citizenship's Unfulfilled Promise"

    Get PDF
    A constant aim of EU citizenship, and indeed the entire project of European integration, has always been to lower barriers and create a common space. If the complete elimination of national borders remains elusive, their importance has been diminished in striking ways by the development of EU citizenship and the ban against nationality based discrimination. Yet the barriers to free movement have been lowered in differential ways. Most citizens of EU member states now enjoy residence, employment and other rights throughout Europe. The extension of some rights to some categories of citizens of some new member states is admittedly sometimes subject to transition periods, but these expire. By contrast, third country nationals -- individuals who do not hold citizenship of one of the member states, even though they may have resided for many years, or even been born in Europe -- remain largely excluded from the benefits of EU citizenship. Various initiatives over the years have opened up limited rights for third country nationals. But the difficulty of enacting these rights, and current moves to more restrictive immigration and naturalization policies, highlight the continuing exclusivity of EU citizenship: immigrants migrate to national polities, and they become European only by virtue of incorporation into national states. This means that EU citizenship's transformative potential remains unrealized.Glendon College (York University

    Leaching studies in lysimeter units

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:8052.46135(no 21) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Islamic fundamentalism

    No full text
    Papers read at a seminar held London (GB), 10 Mar 1988Available from British Library Document Supply Centre- DSC:8028.2185(RAS-SP--1) / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo
    • …
    corecore