12 research outputs found

    Caudal–rostral progression of alpha motoneuron degeneration in the SOD1G93A mouse model of amyotrophic lateral sclerosis

    Get PDF
    Mice with transgenic expression of human SOD1G93A are a widely used model of ALS, with a caudal–rostral progression of motor impairment. Previous studies have quantified the progression of motoneuron (MN) degeneration based on size, even though alpha (α-) and gamma (γ-) MNs overlap in size. Therefore, using molecular markers and synaptic inputs, we quantified the survival of α-MNs and γ-MNs at the lumbar and cervical spinal segments of 3- and 4-month SOD1G93A mice, to investigate whether there is a caudal–rostral progression of MN death. By 3 months, in the cervical and lumbar spinal cord, there was α-MN degeneration with complete γ-MN sparing. At 3 months, the cervical spinal cord had more α-MNs per ventral horn than the lumbar spinal cord in SOD1G93A mice. A similar spatial trend of degeneration was observed in the corticospinal tract, which remained intact in the cervical spinal cord at 3- and 4- months of age. These findings agree with the corticofugal synaptopathy model that α-MNs and CST of the lumbar spinal cord are more susceptible to degeneration in SOD1G93A mice. Hence, there is a spatial and temporal caudal–rostral progression of α-MN and CST degeneration in SOD1G93A mice

    Spinal facilitation of descending motor input

    No full text
    Highly varying patterns of electrostimulation (Dynamic Stimulation, DS) delivered to the dorsal cord through an epidural array with 18 independent electrodes transiently facilitate corticospinal motor responses, even after spinal injury. To partly unravel how corticospinal input are affected by DS, we introduced a corticospinal platform that allows selective cortical stimulation during the multisite acquisition of cord dorsum potentials (CDPs) and the simultaneous supply of DS. Firstly, the epidural interface was validated by the acquisition of the classical multisite distribution of CDPs on the dorsal cord and their input-output profile elicited by pulses delivered to peripheral nerves. Apart from increased EMGs, DS selectively increased excitability of the spinal interneurons that first process corticospinal input, without changing the magnitude of commands descending from the motor cortex, suggesting a novel correlation between muscle recruitment and components of cortically-evoked CDPs. Finally, DS increases excitability of post-synaptic spinal interneurons at the stimulation site and their responsiveness to any residual supraspinal control, thus supporting the use of electrical neuromodulation whenever the motor output is jeopardized by a weak volitional input, due to a partial disconnection from supraspinal structures and/or neuronal brain dysfunctions

    Dynamic electrical stimulation enhances the recruitment of spinal interneurons by corticospinal input

    No full text
    Highly varying patterns of electrostimulation (Dynamic Stimulation, DS) delivered to the dorsal cord through an epidural array with 18 independent electrodes transiently facilitate corticospinal motor responses, even after spinal injury. To partly unravel how corticospinal input are affected by DS, we introduced a corticospinal platform that allows selective cortical stimulation during the multisite acquisition of cord dorsum potentials (CDPs) and the simultaneous supply of DS. Firstly, the epidural interface was validated by the acquisition of the classical multisite distribution of CDPs and their input-output profile elicited by pulses delivered to peripheral nerves. Apart from increased EMGs, DS selectively increased excitability of the spinal interneurons that first process corticospinal input, without changing the magnitude of commands descending from the motor cortex, suggesting a novel correlation between muscle recruitment and components of cortically-evoked CDPs. Finally, DS increases excitability of post-synaptic spinal interneurons at the stimulation site and their responsiveness to any residual supraspinal control, thus supporting the use of electrical neuromodulation whenever the motor output is jeopardized by a weak volitional input, due to a partial disconnection from supraspinal structures and/or neuronal brain dysfunctions

    The bacterial etiology of rosy discoloration of ancient wall paintings

    No full text
    The inventory of microorganisms responsible for biological deterioration of ancient paintings has become an integral part of restoration activities. Here, the microbial agent of rosy discoloration on medieval frescoes in the Crypt of the Original Sin (Matera, Italy) was investigated by a combination of microscopic, molecular and spectroscopic approaches. The bacterial community from three rosy-discoloured painting sites was characterized by 16S rRNA gene-based techniques. The eubacterial population was prevalently composed of Actinobacteria, among which Rubrobacter radiotolerans-related bacteria accounted for 63-87% of the 16S rRNA gene pool per sampled site. Archaea, with prevalence of Haloarchaea-related species, were detected in one of the three sites where they accounted for < 0.1% of the total 16S rRNA gene pool. Raman spectroscopy confirmed the identity between R. radiotolerans carotenoids (bacterioruberins) and pigments responsible for colour alteration of frescoes. This investigation provides the first evidence of a causal relationship between heavy contamination by Rubrobacter-related bacterioruberin-producing bacteria and rosy discoloration of ancient wall paintings
    corecore