35 research outputs found

    The character table of a split extension of the Heisenberg group H1(q)H_1(q) by Sp(2,q)Sp(2,q), qq odd

    Full text link
    In this paper we determine the full character table of a certain split extension H1(q)â‹ŠSp(2,q)H_1(q)\rtimes Sp(2,q) of the Heisenberg group H1H_1 by the odd-characteristic symplectic group Sp(2,q)Sp(2,q).Comment: 9 page

    On intermediate subfactors of Goodman-de la Harpe-Jones subfactors

    Full text link
    In this paper we present a conjecture on intermediate subfactors which is a generalization of Wall's conjecture from the theory of finite groups. Motivated by this conjecture, we determine all intermediate subfactors of Goodman-Harpe-Jones subfactors, and as a result we verify that Goodman-Harpe-Jones subfactors verify our conjecture. Our result also gives a negative answer to a question motivated by a conjecture of Aschbacher-Guralnick.Comment: To appear in Comm. Math. Phy

    Expansion in perfect groups

    Full text link
    Let Ga be a subgroup of GL_d(Q) generated by a finite symmetric set S. For an integer q, denote by Ga_q the subgroup of Ga consisting of the elements that project to the unit element mod q. We prove that the Cayley graphs of Ga/Ga_q with respect to the generating set S form a family of expanders when q ranges over square-free integers with large prime divisors if and only if the connected component of the Zariski-closure of Ga is perfect.Comment: 62 pages, no figures, revision based on referee's comments: new ideas are explained in more details in the introduction, typos corrected, results and proofs unchange

    Generators and commutators in finite groups; abstract quotients of compact groups

    Full text link
    Let N be a normal subgroup of a finite group G. We prove that under certain (unavoidable) conditions the subgroup [N,G] is a product of commutators [N,y] (with prescribed values of y from a given set Y) of length bounded by a function of d(G) and |Y| only. This has several applications: 1. A new proof that G^n is closed (and hence open) in any finitely generated profinite group G. 2. A finitely generated abstract quotient of a compact Hausdorff group must be finite. 3. Let G be a topologically finitely generated compact Hausdorff group. Then G has a countably infinite abstract quotient if and only if G has an infinite virtually abelian continuous quotient.Comment: This paper supersedes the preprint arXiv:0901.0244v2 by the first author and answers the questions raised there. Latest version corrects erroneous Lemma 4.30 and adds new Cor. 1.1
    corecore