32 research outputs found

    On the spin-statistics connection in curved spacetimes

    Full text link
    The connection between spin and statistics is examined in the context of locally covariant quantum field theory. A generalization is proposed in which locally covariant theories are defined as functors from a category of framed spacetimes to a category of *-algebras. This allows for a more operational description of theories with spin, and for the derivation of a more general version of the spin-statistics connection in curved spacetimes than previously available. The proof involves a "rigidity argument" that is also applied in the standard setting of locally covariant quantum field theory to show how properties such as Einstein causality can be transferred from Minkowski spacetime to general curved spacetimes.Comment: 17pp. Contribution to the proceedings of the conference "Quantum Mathematical Physics" (Regensburg, October 2014

    On the spin-statistics connection in curved spacetimes

    Get PDF
    The connection between spin and statistics is examined in the context of locally covariant quantum field theory. A generalization is proposed in which locally covariant theories are defined as functors from a category of framed spacetimes to a category of ∗-algebras. This allows for a more operational description of theories with spin, and for the derivation of a more general version of the spin-statistics connection in curved spacetimes than previously available. The proof involves a "rigidity argument" that is also applied in the standard setting of locally covariant quantum field theory to show how properties such as Einstein causality can be transferred from Minkowski spacetime to general curved spacetimes

    Dynamics of false vacuum bubbles: beyond the thin shell approximation

    Full text link
    We numerically study the dynamics of false vacuum bubbles which are inside an almost flat background; we assumed spherical symmetry and the size of the bubble is smaller than the size of the background horizon. According to the thin shell approximation and the null energy condition, if the bubble is outside of a Schwarzschild black hole, unless we assume Farhi-Guth-Guven tunneling, expanding and inflating solutions are impossible. In this paper, we extend our method to beyond the thin shell approximation: we include the dynamics of fields and assume that the transition layer between a true vacuum and a false vacuum has non-zero thickness. If a shell has sufficiently low energy, as expected from the thin shell approximation, it collapses (Type 1). However, if the shell has sufficiently large energy, it tends to expand. Here, via the field dynamics, field values of inside of the shell slowly roll down to the true vacuum and hence the shell does not inflate (Type 2). If we add sufficient exotic matters to regularize the curvature near the shell, inflation may be possible without assuming Farhi-Guth-Guven tunneling. In this case, a wormhole is dynamically generated around the shell (Type 3). By tuning our simulation parameters, we could find transitions between Type 1 and Type 2, as well as between Type 2 and Type 3. Between Type 2 and Type 3, we could find another class of solutions (Type 4). Finally, we discuss the generation of a bubble universe and the violation of unitarity. We conclude that the existence of a certain combination of exotic matter fields violates unitarity.Comment: 40 pages, 41 figure

    Hadamard states from null infinity

    Full text link
    Free field theories on a four dimensional, globally hyperbolic spacetime, whose dynamics is ruled by a Green hyperbolic partial differential operator, can be quantized following the algebraic approach. It consists of a two-step procedure: In the first part one identifies the observables of the underlying physical system collecting them in a *-algebra which encodes their relational and structural properties. In the second step one must identify a quantum state, that is a positive, normalized linear functional on the *-algebra out of which one recovers the interpretation proper of quantum mechanical theories via the so-called Gelfand-Naimark-Segal theorem. In between the plethora of possible states, only few of them are considered physically acceptable and they are all characterized by the so-called Hadamard condition, a constraint on the singular structure of the associated two-point function. Goal of this paper is to outline a construction scheme for these states which can be applied whenever the underlying background possesses a null (conformal) boundary. We discuss in particular the examples of a real, massless conformally coupled scalar field and of linearized gravity on a globally hyperbolic and asymptotically flat spacetime.Comment: 23 pages, submitted to the Proceedings of the conference "Quantum Mathematical Physics", held in Regensburg from the 29th of September to the 02nd of October 201

    Topological features of massive bosons on two dimensional Einstein space-time

    Full text link
    In this paper we tackle the problem of constructing explicit examples of topological cocycles of Roberts' net cohomology, as defined abstractly by Brunetti and Ruzzi. We consider the simple case of massive bosonic quantum field theory on the two dimensional Einstein cylinder. After deriving some crucial results of the algebraic framework of quantization, we address the problem of the construction of the topological cocycles. All constructed cocycles lead to unitarily equivalent representations of the fundamental group of the circle (seen as a diffeomorphic image of all possible Cauchy surfaces). The construction is carried out using only Cauchy data and related net of local algebras on the circle.Comment: 41 pages, title changed, minor changes, typos corrected, references added. Accepted for publication in Ann. Henri Poincare

    Conformal generally covariant quantum field theory: The scalar field and its Wick products

    Full text link
    In this paper we generalize the construction of generally covariant quantum theories given in the work of Brunetti, Fredenhagen and Verch to encompass the conformal covariant case. After introducing the abstract framework, we discuss the massless conformally coupled Klein Gordon field theory, showing that its quantization corresponds to a functor between two certain categories. At the abstract level, the ordinary fields, could be thought as natural transformations in the sense of category theory. We show that, the Wick monomials without derivatives (Wick powers), can be interpreted as fields in this generalized sense, provided a non trivial choice of the renormalization constants is given. A careful analysis shows that the transformation law of Wick powers is characterized by a weight, and it turns out that the sum of fields with different weights breaks the conformal covariance. At this point there is a difference between the previously given picture due to the presence of a bigger group of covariance. It is furthermore shown that the construction does not depend upon the scale mu appearing in the Hadamard parametrix, used to regularize the fields. Finally, we briefly discuss some further examples of more involved fields.Comment: 21 pages, comments added, to appear on Commun. Math. Phy

    Dynamical locality and covariance: What makes a physical theory the same in all spacetimes?

    Full text link
    The question of what it means for a theory to describe the same physics on all spacetimes (SPASs) is discussed. As there may be many answers to this question, we isolate a necessary condition, the SPASs property, that should be satisfied by any reasonable notion of SPASs. This requires that if two theories conform to a common notion of SPASs, with one a subtheory of the other, and are isomorphic in some particular spacetime, then they should be isomorphic in all globally hyperbolic spacetimes (of given dimension). The SPASs property is formulated in a functorial setting broad enough to describe general physical theories describing processes in spacetime, subject to very minimal assumptions. By explicit constructions, the full class of locally covariant theories is shown not to satisfy the SPASs property, establishing that there is no notion of SPASs encompassing all such theories. It is also shown that all locally covariant theories obeying the time-slice property possess two local substructures, one kinematical (obtained directly from the functorial structure) and the other dynamical (obtained from a natural form of dynamics, termed relative Cauchy evolution). The covariance properties of relative Cauchy evolution and the kinematic and dynamical substructures are analyzed in detail. Calling local covariant theories dynamically local if their kinematical and dynamical local substructures coincide, it is shown that the class of dynamically local theories fulfills the SPASs property. As an application in quantum field theory, we give a model independent proof of the impossibility of making a covariant choice of preferred state in all spacetimes, for theories obeying dynamical locality together with typical assumptions.Comment: 60 pages, LaTeX. Version to appear in Annales Henri Poincar

    The Covariant Entropy Bound, Brane Cosmology, and the Null Energy Condition

    Get PDF
    In discussions of Bousso's Covariant Entropy Bound, the Null Energy Condition is always assumed, as a sufficient {\em but not necessary} condition which helps to ensure that the entropy on any lightsheet shall necessarily be finite. The spectacular failure of the Strong Energy Condition in cosmology has, however, led many astrophysicists and cosmologists to consider models of dark energy which violate {\em all} of the energy conditions, and indeed the current data do not completely rule out such models. The NEC also has a questionable status in brane cosmology: it is probably necessary to violate the NEC in the bulk in order to obtain a "self-tuning" theory of the cosmological constant. In order to investigate these proposals, we modify the Karch-Randall model by introducing NEC-violating matter into AdS5AdS_5 in such a way that the brane cosmological constant relaxes to zero. The entropy on lightsheets remains finite. However, we still find that the spacetime is fundamentally incompatible with the Covariant Entropy Bound machinery, in the sense that it fails the Bousso-Randall consistency condition. We argue that holography probably forbids all {\em cosmological} violations of the NEC, and that holography is in fact the fundamental physical principle underlying the cosmological version of the NEC.Comment: 21 pages, 3 figures, version 2:corrected and greatly improved discussion of the Bousso-Randall consistency check, references added; version3: more references added, JHEP versio

    Deformations of quantum field theories on spacetimes with Killing vector fields

    Full text link
    The recent construction and analysis of deformations of quantum field theories by warped convolutions is extended to a class of curved spacetimes. These spacetimes carry a family of wedge-like regions which share the essential causal properties of the Poincare transforms of the Rindler wedge in Minkowski space. In the setting of deformed quantum field theories, they play the role of typical localization regions of quantum fields and observables. As a concrete example of such a procedure, the deformation of the free Dirac field is studied.Comment: 35 pages, 3 figure
    corecore