37 research outputs found

    The mechanical response of a Uranium-Niobium alloy: A comparison of cast versus wrought processing

    No full text
    A rigorous experimentation and validation program is being undertaken to develop “process aware” constitutive models that elucidate the fundamental mechanisms controlling plasticity in uranium-6 wt.% niobium alloys (U-6Nb). The first alloy is a “wrought” material produced, by processing a cast ingot via forging and rolling into plate. The second material investigated is a direct cast U-6Nb alloy. The purpose of the investigation is to determine the principal differences, or more importantly, similarities, between the two materials due to processing. It is well known that parameters like grain size, impurity size and chemistry affect the deformation and failure characteristics of materials. Metallography conducted on these materials revealed that the microstructures are quite different. Characterization techniques including tension, compression, and shear testing were performed to quantify the principal differences between the materials as a function of stress state. Dynamic characterization using a split Hopkinson pressure bar in conjunction with Taylor impact testing was conducted to derive and thereafter validate constitutive material models. The primary differences between the materials will be described and predictions about material behavior will be made

    Kinetic equations for concurrent size and shape coarsening by the ledge mechanism

    No full text
    The kinetic equations describing concurrent size and shape coarsening of plate-and rod-shaped particles having shapes that deviate from equilibrium are presented. In the derivations, the assumption is made that some of the interfaces are fully or partially coherent and migrate by the ledge mechanism. Three different interfacial character combinations are considered. The analysis also assumes a small and constant volume fraction of particles so that the average matrix composition can be estimated from knowledge of the particle size distribution, the surface area available for atomic attachment/detachment, and the diffusion distance. The resultant flux equations are then used in a computer model to predict the coarsening behavior of an ensemble of nonequilibrium-shaped particles. Comparison of these results with those obtained from the traditional coarsening theory of Lifshitz and Slyosov1 and Wagner2 (LSW) show significant discrepancies. These differences are attributed to the invalidity of many assumptions made in the LSW theory when applied to solid:solid coarsening systems. © 1991 The Minerals, Metals and Materials Society, and ASM International
    corecore