8 research outputs found

    Numerical study of scars in a chaotic billiard

    Full text link
    We study numerically the scaling properties of scars in stadium billiard. Using the semiclassical criterion, we have searched systematically the scars of the same type through a very wide range, from ground state to as high as the 1 millionth state. We have analyzed the integrated probability density along the periodic orbit. The numerical results confirm that the average intensity of certain types of scars is independent of â„Ź\hbar rather than scales with â„Ź\sqrt{\hbar}. Our findings confirm the theoretical predictions of Robnik (1989).Comment: 7 pages in Revtex 3.1, 5 PS figures available upon request. To appear in Phys. Rev. E, Vol. 55, No. 5, 199

    A realistic example of chaotic tunneling: The hydrogen atom in parallel static electric and magnetic fields

    Full text link
    Statistics of tunneling rates in the presence of chaotic classical dynamics is discussed on a realistic example: a hydrogen atom placed in parallel uniform static electric and magnetic fields, where tunneling is followed by ionization along the fields direction. Depending on the magnetic quantum number, one may observe either a standard Porter-Thomas distribution of tunneling rates or, for strong scarring by a periodic orbit parallel to the external fields, strong deviations from it. For the latter case, a simple model based on random matrix theory gives the correct distribution.Comment: Submitted to Phys. Rev.

    Critical Importance of the Perinatal Period in the Development of Obesity

    No full text

    Genomic Imprinting and Human Psychology: Cognition, Behavior and Pathology

    No full text
    corecore