9 research outputs found
Numerical study of scars in a chaotic billiard
We study numerically the scaling properties of scars in stadium billiard.
Using the semiclassical criterion, we have searched systematically the scars of
the same type through a very wide range, from ground state to as high as the 1
millionth state. We have analyzed the integrated probability density along the
periodic orbit. The numerical results confirm that the average intensity of
certain types of scars is independent of rather than scales with
. Our findings confirm the theoretical predictions of Robnik
(1989).Comment: 7 pages in Revtex 3.1, 5 PS figures available upon request. To appear
in Phys. Rev. E, Vol. 55, No. 5, 199
A realistic example of chaotic tunneling: The hydrogen atom in parallel static electric and magnetic fields
Statistics of tunneling rates in the presence of chaotic classical dynamics
is discussed on a realistic example: a hydrogen atom placed in parallel uniform
static electric and magnetic fields, where tunneling is followed by ionization
along the fields direction. Depending on the magnetic quantum number, one may
observe either a standard Porter-Thomas distribution of tunneling rates or, for
strong scarring by a periodic orbit parallel to the external fields, strong
deviations from it. For the latter case, a simple model based on random matrix
theory gives the correct distribution.Comment: Submitted to Phys. Rev.
