452 research outputs found

    Left Non-thrombotic Iliac Vein Lesion with a Symptomatic Right Leg

    Get PDF
    AbstractWe report a case of left sided May–Thurner's syndrome in a 35-year-old female patient with features of chronic venous insufficiency of the right lower extremity in contrast to the more commonly found clinical presentation of involvement of the left lower limb. This patient showed dramatic improvement in relief of pain and swelling of the right lower limb after stenting the May–Thurner lesion with resolution of reflux in the femoral veins

    Bacillus subtilis vegetative isolate surviving chlorine dioxide exposure: an elusive mechanism of resistance

    Get PDF
    Aims Oxidizing agents such as chlorine dioxide are widely used microbicides, including for disinfection of medical equipment. We isolated a Bacillus subtilis isolate from a washer-disinfector whose vegetative form demonstrated unique resistance to chlorine dioxide (0·03%) and hydrogen peroxide (7·5%). The aim of this study was to understand the mechanisms of resistance expressed by this isolate. Methods and Results A range of resistance mechanisms were investigated in the B. subtilis isolate and a reference B. subtilis strain (ATCC 6051) to include bacterial cell aggregation, the presence of profuse exopolysaccharide (EPS), and the expression of detoxification enzymes. The basis of resistance of the isolate to high concentrations of oxidizing agents was not linked to the presence of endospores. Although, the presence of EPS, aggregation and expression of detoxification enzymes may play a role in bacterial survival to low concentrations of chlorine dioxide, it is unlikely that the mechanisms helped tested to survive the bactericidal effect of higher oxidizer concentrations. Conclusions Overall, the mechanisms conferring resistance to chlorine dioxide and hydrogen peroxide remains elusive. Based on recent advances in the mode of action of oxidizing agents and notably hydrogen peroxide, we postulate that additional efficient intracellular mechanisms may be involved to explain significant resistance to in-use concentrations of commonly used high-level disinfectants

    Measles virus host invasion and pathogenesis

    Get PDF
    Measles virus is a highly contagious negative strand RNA virus that is transmitted via the respiratory route and causes systemic disease in previously unexposed humans and non-human primates. Measles is characterised by fever and skin rash and usually associated with cough, coryza and conjunctivitis. A hallmark of measles is the transient immune suppression, leading to increased susceptibility to opportunistic infections. At the same time, the disease is paradoxically associated with induction of a robust virus-specific immune response, resulting in lifelong immunity to measles. Identification of CD150 and nectin-4 as cellular receptors for measles virus has led to new perspectives on tropism and pathogenesis. In vivo studies in non-human primates have shown that the virus initially infects CD150+ lymphocytes and dendritic cells, both in circulation and in lymphoid tissues, followed by virus transmission to nectin-4 expressing epithelial cells. The abilities of the virus to cause systemic infection, to transmit to numerous new hosts via droplets or aerosols and to suppress the host immune response for several months or even years after infection make measles a remarkable disease. This review briefly highlights current topics in studies of measles virus host invasion and pathogenesis

    Spectral properties of zero temperature dynamics in a model of a compacting granular column

    Full text link
    The compacting of a column of grains has been studied using a one-dimensional Ising model with long range directed interactions in which down and up spins represent orientations of the grain having or not having an associated void. When the column is not shaken (zero 'temperature') the motion becomes highly constrained and under most circumstances we find that the generator of the stochastic dynamics assumes an unusual form: many eigenvalues become degenerate, but the associated multi-dimensional invariant spaces have but a single eigenvector. There is no spectral expansion and a Jordan form must be used. Many properties of the dynamics are established here analytically; some are not. General issues associated with the Jordan form are also taken up.Comment: 34 pages, 4 figures, 3 table

    The role of protein tyrosine phosphorylation in integrin-mediated gene induction in monocytes

    Get PDF
    Integrin-mediated cell adhesion, or cross-linking of integrins using antibodies, often results in the enhanced tyrosine phosphorylation of certain intracellular proteins, suggesting that integrins may play a role in signal transduction processes. In fibroblasts, platelets, and carcinoma cells, a novel tyrosine kinase termed pp125FAK has been implicated in integrin-mediated tyrosine phosphorylation. In some cell types, integrin ligation or cell adhesion has also been shown to result in the increased expression of certain genes. Although it seems reasonable to hypothesize that integrin-mediated tyrosine phosphorylation and integrin-mediated gene induction are related, until now, there has been no direct evidence supporting this hypothesis. In the current report, we explore the relationship between integrin- mediated tyrosine phosphorylation and gene induction in human monocytes. We demonstrate that monocyte adherence to tissue culture dishes or to extracellular matrix proteins is followed by a rapid and profound increase in tyrosine phosphorylation, with the predominant phosphorylated component being a protein of 76 kD (pp76). Tyrosine phosphorylation of pp76 and other monocyte proteins can also be triggered by incubation of monocytes with antibodies to the integrin beta 1 subunit, or by F(ab')2 fragments of such antibodies, but not by F(ab) fragments. The ligation of beta 1 integrins with antibodies or F(ab')2 fragments also induces the expression of immediate-early (IE) genes such as IL-1 beta. When adhering monocytes are treated with the tyrosine kinase inhibitors genistein or herbimycin, both phosphorylation of pp76 and induction of IL-1 beta message are blocked in a dose-dependent fashion. Similarly, treatment with genistein or herbimycin can block tyrosine phosphorylation of pp76 and IL-1 beta message induction mediated by ligation of beta 1 integrin with antibodies. These observations suggest that protein tyrosine phosphorylation is an important aspect of integrin-mediated IE gene induction in monocytes. The cytoplasmic tyrosine kinase pp125FAK, although important in integrin signaling in other cell types, seems not to play a role in monocytes because this protein could not be detected in these cells

    Microphysics of SO(10) Cosmic Strings

    Full text link
    We uncover a rich microphysical structure for SO(10) cosmic strings. For the abelian string the electroweak symmetry is restored around it in a region depending on the electroweak scale. A rich structure of nonabelian strings is found. Some of these also restore the electroweak symmetry. We investigate the zero mode structure of our strings. Whilst there are right handed neutrino zero modes for the abelian string, they do not survive the electroweak phase transition. In general the nonabelian strings do not have fermion zero modes. We consider the generalisation of our results to other theories and consider cosmological consequences of them.Comment: 34 pages, LATEX. Replaced version is restructured, and has small correction to fermion zero mode analysis. To be published in Physical Review

    A strongly first order electroweak phase transition from strong symmetry-breaking interactions

    Get PDF
    We argue that a strongly first order electroweak phase transition is natural in the presence of strong symmetry-breaking interactions, such as technicolor. We demonstrate this using an effective linear scalar theory of the symmetry-breaking sector.Comment: LaTex, 15 pages, 3 figures in EPS format. Phys. Rev. D approved Typographically Correct version, minor grammatical change

    Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink

    No full text
    The terrestrial biosphere is currently a strong carbon (C) sink but may switch to a source in the 21st century as climate-driven losses exceed CO2-driven C gains, thereby accelerating global warming. Although it has long been recognized that tropical climate plays a critical role in regulating interannual climate variability, the causal link between changes in temperature and precipitation and terrestrial processes remains uncertain. Here, we combine atmospheric mass balance, remote sensing-modeled datasets of vegetation C uptake, and climate datasets to characterize the temporal variability of the terrestrial C sink and determine the dominant climate drivers of this variability. We show that the interannual variability of global land C sink has grown by 50–100% over the past 50 y. We further find that interannual land C sink variability is most strongly linked to tropical nighttime warming, likely through respiration. This apparent sensitivity of respiration to nighttime temperatures, which are projected to increase faster than global average temperatures, suggests that C stored in tropical forests may be vulnerable to future warming
    • …
    corecore