23 research outputs found

    Ideal Stars and General Relativity

    Get PDF
    We study a system of differential equations that governs the distribution of matter in the theory of General Relativity. The new element in this paper is the use of a dynamical action principle that includes all the degrees of freedom, matter as well as metric. The matter lagrangian defines a relativistic version of non-viscous, isentropic hydrodynamics. The matter fields are a scalar density and a velocity potential; the conventional, four-vector velocity field is replaced by the gradient of the potential and its scale is fixed by one of the eulerian equations of motion, an innovation that significantly affects the imposition of boundary conditions. If the density is integrable at infinity, then the metric approaches the Schwarzschild metric at large distances. There are stars without boundary and with finite total mass; the metric shows rapid variation in the neighbourhood of the Schwarzschild radius and there is a very small core where a singularity indicates that the gas laws break down. For stars with boundary there emerges a new, critical relation between the radius and the gravitational mass, a consequence of the stronger boundary conditions. Tentative applications are suggested, to certain Red Giants, and to neutron stars, but the investigation reported here was limited to polytropic equations of state. Comparison with the results of Oppenheimer and Volkoff on neutron cores shows a close agreement of numerical results. However, in the model the boundary of the star is fixed uniquely by the required matching of the interior metric to the external Schwarzschild metric, which is not the case in the traditional approach.Comment: 26 pages, 7 figure

    On Relativistic Material Reference Systems

    Get PDF
    This work closes certain gaps in the literature on material reference systems in general relativity. It is shown that perfect fluids are a special case of DeWitt's relativistic elastic media and that the velocity--potential formalism for perfect fluids can be interpreted as describing a perfect fluid coupled to a fleet of clocks. A Hamiltonian analysis of the elastic media with clocks is carried out and the constraints that arise when the system is coupled to gravity are studied. When the Hamiltonian constraint is resolved with respect to the clock momentum, the resulting true Hamiltonian is found to be a functional only of the gravitational variables. The true Hamiltonian is explicitly displayed when the medium is dust, and is shown to depend on the detailed construction of the clocks.Comment: 18 pages, ReVTe

    A Variational Procedure for Time-Dependent Processes

    Full text link
    A simple variational Lagrangian is proposed for the time development of an arbitrary density matrix, employing the "factorization" of the density. Only the "kinetic energy" appears in the Lagrangian. The formalism applies to pure and mixed state cases, the Navier-Stokes equations of hydrodynamics, transport theory, etc. It recaptures the Least Dissipation Function condition of Rayleigh-Onsager {\bf and in practical applications is flexible}. The variational proposal is tested on a two level system interacting that is subject, in one instance, to an interaction with a single oscillator and, in another, that evolves in a dissipative mode.Comment: 25 pages, 4 figure

    Variational description of multi-fluid hydrodynamics: Uncharged fluids

    Full text link
    We present a formalism for Newtonian multi-fluid hydrodynamics derived from an unconstrained variational principle. This approach provides a natural way of obtaining the general equations of motion for a wide range of hydrodynamic systems containing an arbitrary number of interacting fluids and superfluids. In addition to spatial variations we use ``time shifts'' in the variational principle, which allows us to describe dissipative processes with entropy creation, such as chemical reactions, friction or the effects of external non-conservative forces. The resulting framework incorporates the generalization of the entrainment effect originally discussed in the case of the mixture of two superfluids by Andreev and Bashkin. In addition to the conservation of energy and momentum, we derive the generalized conservation laws of vorticity and helicity, and the special case of Ertel's theorem for the single perfect fluid. We explicitly discuss the application of this framework to thermally conducting fluids, superfluids, and superfluid neutron star matter. The equations governing thermally conducting fluids are found to be more general than the standard description, as the effect of entrainment usually seems to be overlooked in this context. In the case of superfluid He4 we recover the Landau--Khalatnikov equations of the two-fluid model via a translation to the ``orthodox'' framework of superfluidity, which is based on a rather awkward choice of variables. Our two-fluid model for superfluid neutron star matter allows for dissipation via mutual friction and also ``transfusion'' via beta-reactions between the neutron fluid and the proton-electron fluid.Comment: uses RevTeX 4; 20 pages. To appear in PRD. v2: removed discussion of charged fluids and coupling to electromagnetic fields, which are submitted as a separate paper for a clearer presentation v3: fixed typo in Eq.(9), updated some reference
    corecore