99 research outputs found

    Processes controlling lithium isotopic distribution in contact aureoles: A case study of the Florence County pegmatites, Wisconsin

    Get PDF
    Li isotopes may be useful tracers of fluid flow in a number of geological environments and case studies of contact aureoles have highlighted the very large Li isotopic fractionation that can be generated in these settings. However, the amount of isotopic fractionation and the distance that Li travels into the country rocks vary greatly from place to place. Seeking to identify the parameters that govern Li distribution in contact aureoles, we apply a combination of Li isotope analyses, 1-D diffusion and 2-D advection-diffusion modeling to two country rock profiles adjacent to Li-rich pegmatite dikes from the Florence County pegmatite field, Wisconsin. Although less than ∟3 m thick, the pegmatite sheets have a large impact on the Li budget of the country rocks (amphibolites and schists); Li is enriched in adjacent country rocks by up to a factor of 20 over more distant amphibolites and schists. Li from the pegmatite has traveled more than 50 m into the country rocks, and Li isotopes are systematically fractionated with distance from the contacts (with δ7Li varying from +6 at the contact to-7 at 30 m from the contact in one case). These observations are consistent with diffusive fractionation of Li through an advecting grain-boundary fluid. Both one-dimensional diffusion and two-dimensional advection-diffusion models fail to reproduce the exact Li distribution in the profiles, suggesting that fluid advection, coupled with heterogeneous permeability, plays an important role in determining the final Li distribution within the contact aureoles

    Lithium isotopes may trace subducting slab signatures in Aleutian arc lavas and intrusions

    Get PDF
    We report [Li] and δ7Li values for a well-characterized suite of 52 geographically (165–184°W), compositionally (SiO2 = 46–70 wt.%), and temporally (0–38 Ma) diverse lavas and intrusive samples. The δ7Li in these rocks range from −0.7‰ to +14.2‰, with 32 of the 35 lavas and 12 of the 17 intrusive samples falling within the depleted mantle range (δ7Li +1.6 to +5.6‰), as sampled by mid-ocean ridge basalts (MORB). The δ7Li values of Aleutian lavas do not exhibit the spatial trends observed in other slab component tracers, nor do δ7Li values correlate with any slab component indicators, such as radiogenic isotopes, oxygen isotopes, or trace element ratios such as Cs/La and Th/La. The δ7Li values in Aleutian intrusions also do not exhibit temporal trends, however, an overall positive relationship exists between δ7Li and Th/Nd. Mixing models for δ7Li and 143Nd/144Nd values suggest that Aleutian samples within or above the MORB δ7Li range can be explained by addition of <1–2% sediment-derived aqueous fluid and ≤3% sediment melt to depleted mantle; both are required to explain the range in δ7Li that is observed. Sediment-derived fluid exerts a stronger control on Aleutian samples having higher δ7Li values than the MORB range, while sediment melt skews the Li isotopic compositions of MORB-range samples to slightly lower values than if sediment fluid was the only slab influence. Our study demonstrates that a slab signature may be deciphered via modeling even in arcs where spatial trends in δ7Li values and correlations with slab component indicators are lacking

    Antineutrinos from Earth: A reference model and its uncertainties

    Full text link
    We predict geoneutrino fluxes in a reference model based on a detailed description of Earth's crust and mantle and using the best available information on the abundances of uranium, thorium, and potassium inside Earth's layers. We estimate the uncertainties of fluxes corresponding to the uncertainties of the element abundances. In addition to distance integrated fluxes, we also provide the differential fluxes as a function of distance from several sites of experimental interest. Event yields at several locations are estimated and their dependence on the neutrino oscillation parameters is discussed. At Kamioka we predict N(U+Th)=35 +- 6 events for 10^{32} proton yr and 100% efficiency assuming sin^2(2theta)=0.863 and delta m^2 = 7.3 X 10^{-5} eV^2. The maximal prediction is 55 events, obtained in a model with fully radiogenic production of the terrestrial heat flow.Comment: 24 pages, ReVTeX4, plus 7 postscript figures; minor formal changes to match version to be published in PR

    Modeling infection risk and energy use of upper-room Ultraviolet Germicidal Irradiation systems in multi-room environments

    Get PDF
    The effectiveness of ultraviolet irradiation at inactivating airborne pathogens is well proven, and the technology is also commonly promoted as an energy-efficient way of reducing infection risk in comparison to increasing ventilation. However, determining how and where to apply upper-room Ultraviolet Germicidal Irradiation devices for the greatest benefit is still poorly understood. This article links multi-zone infection risk models with energy calculations to assess the potential impact of a Ultraviolet Germicidal Irradiation installation across a series of inter-connected spaces, such as a hospital ward. A first-order decay model of ultraviolet inactivation is coupled with a room air model to simulate patient room and whole-ward level disinfection under different mixing and ultraviolet field conditions. Steady-state computation of quanta-concentrations is applied to the Wells–Riley equation to predict likely infection rates. Simulation of a hypothetical ward demonstrates the relative influence of different design factors for susceptible patients co-located with an infectious source or in nearby rooms. In each case, energy requirements are calculated and compared to achieving the same level of infection risk through improved ventilation. Ultraviolet devices are seen to be most effective where they are located close to the infectious source; however, when the location of the infectious source is not known, locating devices in patient rooms is likely to be more effective than installing them in connecting corridor or communal zones. Results show an ultraviolet system may be an energy-efficient solution to controlling airborne infection, particularly in semi-open hospital environments, and considering the whole ward rather than just a single room at the design stage is likely to lead to a more robust solution

    Palaeozoic Basement of the Pyrenees

    Get PDF
    International audienceIn the Pyrenees, the Cambrian-Lower Ordovician strata represent a quiescent time span with no remarkable tectonic activity, followed by a late Early-Mid Ordovician episode of uplift and erosion that led to the formation of the Sardic unconformity. Silurian sedimentation was widespread and transgressive followed by a Devonian succession characterized by a complex mosaic of sedi-mentary facies. Carboniferous pre-Variscan sediments (Tournaisian-VisĂŠan cherts and limestones) precede the arrival of the synorogenic siliciclastic supplies of the Culm flysch at the Late Serpukhovian. All this succession was subsequently affected by the Serpukhovian-Bashkirian (Variscan) collision, as a result of which, the Palaeozoic rocks were incorporated into the northeastern branch of the Ibero-Armorican Arc

    Baryons: What, When and Where?

    Full text link
    We review the current state of empirical knowledge of the total budget of baryonic matter in the Universe as observed since the epoch of reionization. Our summary examines on three milestone redshifts since the reionization of H in the IGM, z = 3, 1, and 0, with emphasis on the endpoints. We review the observational techniques used to discover and characterize the phases of baryons. In the spirit of the meeting, the level is aimed at a diverse and non-expert audience and additional attention is given to describe how space missions expected to launch within the next decade will impact this scientific field.Comment: Proceedings Review for "Astrophysics in the Next Decade: JWST and Concurrent Facilities", ed. X. Tielens, 38 pages, 10 color figures. Revised to address comments from the communit

    Observations of the High Redshift Universe

    Get PDF
    (Abridged) In these lectures aimed for non-specialists, I review progress in understanding how galaxies form and evolve. Both the star formation history and assembly of stellar mass can be empirically traced from redshifts z~6 to the present, but how the various distant populations inter-relate and how stellar assembly is regulated by feedback and environmental processes remains unclear. I also discuss how these studies are being extended to locate and characterize the earlier sources beyond z~6. Did early star-forming galaxies contribute significantly to the reionization process and over what period did this occur? Neither theory nor observations are well-developed in this frontier topic but the first results presented here provide important guidance on how we will use more powerful future facilities.Comment: To appear in `First Light in Universe', Saas-Fee Advanced Course 36, Swiss Soc. Astrophys. Astron. in press. 115 pages, 64 figures (see http://www.astro.caltech.edu/~rse/saas-fee.pdf for hi-res figs.) For lecture ppt files see http://obswww.unige.ch/saas-fee/preannouncement/course_pres/overview_f.htm

    Do Femtonewton Forces Affect Genetic Function? A Review

    Full text link
    Protein-Mediated DNA looping is intricately related to gene expression. Therefore any mechanical constraint that disrupts loop formation can play a significant role in gene regulation. Polymer physics models predict that less than a piconewton of force may be sufficient to prevent the formation of DNA loops. Thus, it appears that tension can act as a molecular switch that controls the much larger forces associated with the processive motion of RNA polymerase. Since RNAP can exert forces over 20 pN before it stalls, a ‘substrate tension switch’ could offer a force advantage of two orders of magnitude. Evidence for such a mechanism is seen in recent in vitro micromanipulation experiments. In this article we provide new perspective on existing theory and experimental data on DNA looping in vitro and in vivo . We elaborate on the connection between tension and a variety of other intracellular mechanical constraints including sequence specific curvature and supercoiling. In the process, we emphasize that the richness and versatility of DNA mechanics opens up a whole new paradigm of gene regulation to explore.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41816/1/10867_2005_Article_9002.pd

    The MeerKAT Galaxy Cluster Legacy Survey: I. Survey overview and highlights

    Get PDF
    Please abstract in the article.The South African Radio Astronomy Observatory (SARAO), the National Research Foundation (NRF), the National Radio Astronomy Observatory, US National Science Foundation, the South African Research Chairs Initiative of the DSI/NRF, the SARAO HCD programme, the South African Research Chairs Initiative of the Department of Science and Innovation.http://www.aanda.orghj2022Physic
    • …
    corecore