28 research outputs found

    Emplotment as Epic in Archaeological Writing: The Site Monograph as Narrative

    Full text link
    To emplot a narrative as epic is to present a story of vast scope and multiple plots as a legitimate member of a tradition of other such stories. This article argues that emplotment as epic is the broadest of three levels of plot in archaeological writings. At that level, the site monograph emerges as a characteristically archaeological form of narrative, fundamental to archaeology as a discipline and a source of chronic anxiety for archaeologists. The ‘stories’ told in site monographs are epic in length, diversity of materials covered and multiplicity of themes, plots and authors. Indeed, the more complexities of that sort the better, since those are features that help to emplot the work as good archaeology

    The tomato terpene synthase gene family

    Get PDF
    Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far
    corecore