68 research outputs found

    A Heavy Fermion Can Create a Soliton: A 1+1 Dimensional Example

    Get PDF
    We show that quantum effects can stabilize a soliton in a model with no soliton at the classical level. The model has a scalar field chirally coupled to a fermion in 1+1 dimensions. We use a formalism that allows us to calculate the exact one loop fermion contribution to the effective energy for a spatially varying scalar background. This energy includes the contribution from counterterms fixed in the perturbative sector of the theory. The resulting energy is therefore finite and unambiguous. A variational search then yields a fermion number one configuration whose energy is below that of a single free fermion.Comment: 10 pages, RevTeX, 2 figures composed from 4 .eps files; v2: fixed minor errors, added reference; v3: corrected reference added in v

    Fractional and Integer Charges from Levinson's Theorem

    Get PDF
    We compute fractional and integer fermion quantum numbers of static background field configurations using phase shifts and Levinson's theorem. By extending fermionic scattering theory to arbitrary dimensions, we implement dimensional regularization in a 1+1 dimensional gauge theory. We demonstrate that this regularization procedure automatically eliminates the anomaly in the vector current that a naive regulator would produce. We also apply these techniques to bag models in one and three dimensions.Comment: 16 pages, uses RevTex, 1 figure; v2: minor correction

    Identifying the mechanisms underpinning recognition of structured sequences of action

    Get PDF
    © 2012 The Experimental Psychology SocietyWe present three experiments to identify the specific information sources that skilled participants use to make recognition judgements when presented with dynamic, structured stimuli. A group of less skilled participants acted as controls. In all experiments, participants were presented with filmed stimuli containing structured action sequences. In a subsequent recognition phase, participants were presented with new and previously seen stimuli and were required to make judgements as to whether or not each sequence had been presented earlier (or were edited versions of earlier sequences). In Experiment 1, skilled participants demonstrated superior sensitivity in recognition when viewing dynamic clips compared with static images and clips where the frames were presented in a nonsequential, randomized manner, implicating the importance of motion information when identifying familiar or unfamiliar sequences. In Experiment 2, we presented normal and mirror-reversed sequences in order to distort access to absolute motion information. Skilled participants demonstrated superior recognition sensitivity, but no significant differences were observed across viewing conditions, leading to the suggestion that skilled participants are more likely to extract relative rather than absolute motion when making such judgements. In Experiment 3, we manipulated relative motion information by occluding several display features for the duration of each film sequence. A significant decrement in performance was reported when centrally located features were occluded compared to those located in more peripheral positions. Findings indicate that skilled participants are particularly sensitive to relative motion information when attempting to identify familiarity in dynamic, visual displays involving interaction between numerous features

    Identity of the imaginary-time and real-time thermal propagators for scalar bound states in a one-generation Nambu-Jona-Lasinio model

    Full text link
    By rigorous reanalysis of the results, we have proven that the propagators at finite temperature for scalar bound states in one-generation fermion condensate scheme of electroweak symmetry breaking are in fact identical in the imaginary-time and the real-time formalism. This dismisses the doubt about possible discrepancy between the two formalisms in this problem. Identity of the derived thermal transformation matrices of the real-time matrix propagators for scalar bound states without and with chemical potential and the ones for corresponding elementary scalar particles shows similarity of thermodynamic property between the two types of particles. Only one former inference is modified, i.e. when the two flavors of fermions have unequal nonzero masses, the amplitude of the composite Higgs particle will decay instead grow in time.Comment: 5 pages, revtex4, no figure

    Heavy Fermion Stabilization of Solitons in 1+1 Dimensions

    Get PDF
    We find static solitons stabilized by quantum corrections in a (1+1)-dimensional model with a scalar field chirally coupled to fermions. This model does not support classical solitons. We compute the renormalized energy functional including one-loop quantum corrections. We carry out a variational search for a configuration that minimizes the energy functional. We find a nontrivial configuration with fermion number whose energy is lower than the same number of free fermions quantized about the translationally invariant vacuum. In order to compute the quantum corrections for a given background field we use a phase-shift parameterization of the Casimir energy. We identify orders of the Born series for the phase shift with perturbative Feynman diagrams in order to renormalize the Casimir energy using perturbatively determined counterterms. Generalizing dimensional regularization, we demonstrate that this procedure yields a finite and unambiguous energy functional.Comment: 27 papes Latex, equation labels corrected, version to be published in Nucl. Phys.

    Kink propagation in a two-dimensional curved Josephson junction

    Get PDF
    We consider the propagation of sine-Gordon kinks in a planar curved strip as a model of nonlinear wave propagation in curved wave guides. The homogeneous Neumann transverse boundary conditions, in the curvilinear coordinates, allow to assume a homogeneous kink solution. Using a simple collective variable approach based on the kink coordinate, we show that curved regions act as potential barriers for the wave and determine the threshold velocity for the kink to cross. The analysis is confirmed by numerical solution of the 2D sine-Gordon equation.Comment: 8 pages, 4 figures (2 in color

    Multiple bound states in scissor-shaped waveguides

    Full text link
    We study bound states of the two-dimensional Helmholtz equations with Dirichlet boundary conditions in an open geometry given by two straight leads of the same width which cross at an angle θ\theta. Such a four-terminal junction with a tunable θ\theta can realized experimentally if a right-angle structure is filled by a ferrite. It is known that for θ=90o\theta=90^o there is one proper bound state and one eigenvalue embedded in the continuum. We show that the number of eigenvalues becomes larger with increasing asymmetry and the bound-state energies are increasing as functions of θ\theta in the interval (0,90o)(0,90^o). Moreover, states which are sufficiently strongly bent exist in pairs with a small energy difference and opposite parities. Finally, we discuss how with increasing θ\theta the bound states transform into the quasi-bound states with a complex wave vector.Comment: 6 pages, 6 figure

    A Biased Review of Sociophysics

    Full text link
    Various aspects of recent sociophysics research are shortly reviewed: Schelling model as an example for lack of interdisciplinary cooperation, opinion dynamics, combat, and citation statistics as an example for strong interdisciplinarity.Comment: 16 pages for J. Stat. Phys. including 2 figures and numerous reference

    Color categories: Evidence for the cultural relativity hypothesis

    Get PDF
    The question of whether language affects our categorization of perceptual continua is of particular interest for the domain of color where constraints on categorization have been proposed both within the visual system and in the visual environment. Recent research (Roberson, Davies, & Davidoff, 2000; Roberson et al., in press) found substantial evidence of cognitive color differences between different language communities, but concerns remained as to how representative might be a tiny, extremely remote community. The present study replicates and extends previous findings using additional paradigms among a larger community in a different visual environment. Adult semi-nomadic tribesmen in Southern Africa carried out similarity judgments, short-term memory and long-term learning tasks. They showed different cognitive organization of color to both English and another language with the five color terms. Moreover, Categorical Perception effects were found to differ even between languages with broadly similar color categories. The results provide further evidence of the tight relationship between language and cognition
    corecore