725 research outputs found

    Are ghost surfaces quadratic-flux-minimizing?

    Full text link
    Two candidates for "almost-invariant" toroidal surfaces passing through magnetic islands, namely quadratic-flux-minimizing (QFMin) surfaces and ghost surfaces, use families of periodic pseudo-orbits (i.e. paths for which the action is not exactly extremal). QFMin pseudo-orbits, which are coordinate-dependent, are field lines obtained from a modified magnetic field, and ghost-surface pseudo-orbits are obtained by displacing closed field lines in the direction of steepest descent of magnetic action, Adl\oint \vec{A}\cdot\mathbf{dl}. A generalized Hamiltonian definition of ghost surfaces is given and specialized to the usual Lagrangian definition. A modified Hamilton's Principle is introduced that allows the use of Lagrangian integration for calculation of the QFMin pseudo-orbits. Numerical calculations show QFMin and Lagrangian ghost surfaces give very similar results for a chaotic magnetic field perturbed from an integrable case, and this is explained using a perturbative construction of an auxiliary poloidal angle for which QFMin and Lagrangian ghost surfaces are the same up to second order. While presented in the context of 3-dimensional magnetic field line systems, the concepts are applicable to defining almost-invariant tori in other 11/21{1/2} degree-of-freedom nonintegrable Lagrangian/Hamiltonian systems.Comment: 8 pages, 3 figures. Revised version includes post-publication corrections in text, as described in Appendix C Erratu

    Novel Transversity Properties in Semi-Inclusive Deep Inelastic Scattering

    Get PDF
    The TT-odd distribution functions contributing to transversity properties of the nucleon and their role in fueling nontrivial contributions to azimuthal asymmetries in semi-inclusive deep inelastic scattering are investigated. We use a dynamical model to evaluate these quantities in terms of HERMES kinematics.Comment: 5 pages revtex; 5 eps figures. References added. To appear as a Rapid Communication in Physical Review

    Probing Quark Fragmentation Functions for Spin-1/2 Baryon Production in Unpolarized e+ee^+e^- Annihilation

    Get PDF
    We study the measurement of the quark fragmentation functions for spin-1/2 baryon production (Λ\Lambda and Λˉ\bar \Lambda, in particular) in unpolarized e+ee^+e^- annihilation. The spin-dependent fragmentation functions g^1(z)\hat g_1(z) and h^1(z)\hat h_1(z) can be probed in the process as a result of quark-antiquark spin correlation and the weak decay of the baryons. The relevant cross section is expressed as a product of the two-jet cross-section, the fragmentation functions, and the differential width of the hyperon decay.Comment: 17 pages, ReVTeX with (1 figure available from authors), MIT-CTP: #236

    Partially ordered models

    Full text link
    We provide a formal definition and study the basic properties of partially ordered chains (POC). These systems were proposed to model textures in image processing and to represent independence relations between random variables in statistics (in the later case they are known as Bayesian networks). Our chains are a generalization of probabilistic cellular automata (PCA) and their theory has features intermediate between that of discrete-time processes and the theory of statistical mechanical lattice fields. Its proper definition is based on the notion of partially ordered specification (POS), in close analogy to the theory of Gibbs measure. This paper contains two types of results. First, we present the basic elements of the general theory of POCs: basic geometrical issues, definition in terms of conditional probability kernels, extremal decomposition, extremality and triviality, reconstruction starting from single-site kernels, relations between POM and Gibbs fields. Second, we prove three uniqueness criteria that correspond to the criteria known as bounded uniformity, Dobrushin and disagreement percolation in the theory of Gibbs measures.Comment: 54 pages, 11 figures, 6 simulations. Submited to Journal of Stat. Phy

    Action-gradient-minimizing pseudo-orbits and almost-invariant tori

    Full text link
    Transport in near-integrable, but partially chaotic, 11/21 1/2 degree-of-freedom Hamiltonian systems is blocked by invariant tori and is reduced at \emph{almost}-invariant tori, both associated with the invariant tori of a neighboring integrable system. "Almost invariant" tori with rational rotation number can be defined using continuous families of periodic \emph{pseudo-orbits} to foliate the surfaces, while irrational-rotation-number tori can be defined by nesting with sequences of such rational tori. Three definitions of "pseudo-orbit," \emph{action-gradient--minimizing} (AGMin), \emph{quadratic-flux-minimizing} (QFMin) and \emph{ghost} orbits, based on variants of Hamilton's Principle, use different strategies to extremize the action as closely as possible. Equivalent Lagrangian (configuration-space action) and Hamiltonian (phase-space action) formulations, and a new approach to visualizing action-minimizing and minimax orbits based on AGMin pseudo-orbits, are presented.Comment: Accepted for publication in a special issue of Communications in Nonlinear Science and Numerical Simulation (CNSNS) entitled "The mathematical structure of fluids and plasmas : a volume dedicated to the 60th birthday of Phil Morrison

    Probing Yukawian gravitational potential by numerical simulations. I. Changing N-body codes

    Full text link
    In the weak field limit general relativity reduces, as is well known, to the Newtonian gravitation. Alternative theories of gravity, however, do not necessarily reduce to Newtonian gravitation; some of them, for example, reduce to Yukawa-like potentials instead of the Newtonian potential. Since the Newtonian gravitation is largely used to model with success the structures of the universe, such as for example galaxies and clusters of galaxies, a way to probe and constrain alternative theories, in the weak field limit, is to apply them to model the structures of the universe. In the present study, we consider how to probe Yukawa-like potentials using N-body numerical simulations.Comment: 17 pages, 11 figures. To appear in General Relativity and Gravitatio

    Constant Curvature Coefficients and Exact Solutions in Fractional Gravity and Geometric Mechanics

    Full text link
    We study fractional configurations in gravity theories and Lagrange mechanics. The approach is based on Caputo fractional derivative which gives zero for actions on constants. We elaborate fractional geometric models of physical interactions and we formulate a method of nonholonomic deformations to other types of fractional derivatives. The main result of this paper consists in a proof that for corresponding classes of nonholonomic distributions a large class of physical theories are modelled as nonholonomic manifolds with constant matrix curvature. This allows us to encode the fractional dynamics of interactions and constraints into the geometry of curve flows and solitonic hierarchies.Comment: latex2e, 11pt, 27 pages, the variant accepted to CEJP; added and up-dated reference

    A mechanism for the T-odd pion fragmentation function

    Full text link
    We consider a simple rescattering mechanism to calculate a leading twist TT-odd pion fragmentation function, a favored candidate for filtering the transversity properties of the nucleon. We evaluate the single spin azimuthal asymmetry for a transversely polarized target in semi-inclusive deep inelastic scattering (for HERMES kinematics). Additionally, we calculate the double TT-odd cos2ϕ\cos2\phi asymmetry in this framework.Comment: 6 pages revtex, 7 eps figures, references added and updated in this published versio

    Hopping motion of lattice gases through nonsymmetric potentials under strong bias conditions

    Full text link
    The hopping motion of lattice gases through potentials without mirror-reflection symmetry is investigated under various bias conditions. The model of 2 particles on a ring with 4 sites is solved explicitly; the resulting current in a sawtooth potential is discussed. The current of lattice gases in extended systems consisting of periodic repetitions of segments with sawtooth potentials is studied for different concentrations and values of the bias. Rectification effects are observed, similar to the single-particle case. A mean-field approximation for the current in the case of strong bias acting against the highest barriers in the system is made and compared with numerical simulations. The particle-vacancy symmetry of the model is discussed.Comment: 8 pages (incl. 6 eps figures); RevTeX 3.

    Transversity distributions in the nucleon in the large-N_c limit

    Get PDF
    We compute the quark and antiquark transversity distributions in the nucleon at a low normalization point of 600 MeV in the large-NcN_c limit, where the nucleon can be described as a soliton of an effective chiral theory (chiral quark-soliton model). The flavor-nonsinglet distributions, δu(x)δd(x)\delta u(x) - \delta d(x) and δuˉ(x)δdˉ(x)\delta\bar u(x) - \delta\bar d(x), appear in leading order of the 1/Nc1/N_c-expansion, while the flavor-singlet distributions, δu(x)+δd(x)\delta u(x) + \delta d(x) and δuˉ(x)+δdˉ(x)\delta\bar u(x) + \delta\bar d(x), are non-zero only in next-to-leading order. The transversity quark and antiquark distributions are found to be significantly different from the longitudinally polarized distributions Δu(x)±Δd(x)\Delta u (x) \pm \Delta d (x) and Δuˉ(x)±Δdˉ(x)\Delta\bar u (x) \pm \Delta\bar d (x), respectively, in contrast to the prediction of the naive non-relativistic quark model. We show that this affects the predictions for the spin asymmetries in Drell-Yan pair production in transversely polarized pp and ppbar collisions.Comment: 45 pages, 16 figure
    corecore