49 research outputs found
Anthropogenic Space Weather
Anthropogenic effects on the space environment started in the late 19th
century and reached their peak in the 1960s when high-altitude nuclear
explosions were carried out by the USA and the Soviet Union. These explosions
created artificial radiation belts near Earth that resulted in major damages to
several satellites. Another, unexpected impact of the high-altitude nuclear
tests was the electromagnetic pulse (EMP) that can have devastating effects
over a large geographic area (as large as the continental United States). Other
anthropogenic impacts on the space environment include chemical release ex-
periments, high-frequency wave heating of the ionosphere and the interaction of
VLF waves with the radiation belts. This paper reviews the fundamental physical
process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure
Measurement of the branching fraction for
We have studied the leptonic decay of the resonance into tau
pairs using the CLEO II detector. A clean sample of tau pair events is
identified via events containing two charged particles where exactly one of the
particles is an identified electron. We find . The result is consistent with
expectations from lepton universality.Comment: 9 pages, RevTeX, two Postscript figures available upon request, CLNS
94/1297, CLEO 94-20 (submitted to Physics Letters B
Measurement of the Decay Asymmetry Parameters in and
We have measured the weak decay asymmetry parameters (\aLC ) for two \LC\
decay modes. Our measurements are \aLC = -0.94^{+0.21+0.12}_{-0.06-0.06} for
the decay mode and \aLC = -0.45\pm 0.31 \pm
0.06 for the decay mode . By combining these
measurements with the previously measured decay rates, we have extracted the
parity-violating and parity-conserving amplitudes. These amplitudes are used to
test models of nonleptonic charmed baryon decay.Comment: 11 pages including the figures. Uses REVTEX and psfig macros. Figures
as uuencoded postscript. Also available as
http://w4.lns.cornell.edu/public/CLNS/1995/CLNS95-1319.p
Production and Decay of D_1(2420)^0 and D_2^*(2460)^0
We have investigated and final states and
observed the two established charmed mesons, the with mass
MeV/c and width MeV/c and
the with mass MeV/c and width
MeV/c. Properties of these final states, including
their decay angular distributions and spin-parity assignments, have been
studied. We identify these two mesons as the doublet predicted
by HQET. We also obtain constraints on {\footnotesize } as a function of the cosine of the relative phase of the two
amplitudes in the decay.Comment: 15 pages in REVTEX format. hardcopies with figures can be obtained by
sending mail to: [email protected]
The Earth: Plasma Sources, Losses, and Transport Processes
This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed
Recommended from our members
Very high energy proton proton interactions: exploratory survey in a bubble chamber
We propose a bubble chamber study of the general features of proton-proton interactions in the 200 to 500 GeV energy range in as much detail as measuring accuracy permits, starting with charged particle multiplicities, transverse and longitudinal momentum distributions, and detailed measurement of particle systems originating from the target proton, and extending to an exploration of the possibility of doing some four-constraint or equivalent kinematic analysis of complete events. A scanning search for any new or exotic phenomena is an important part of this proposal. We request 100,000 pictures initially in a 2 meter or 14 foot hydrogen bubble chamber, with 200 GeV or greater proton beam, {delta}p/p{le} .1%, {delta}{theta} {le} 2 mrad, and both tolerances better, if possible
Recommended from our members
Neutrino interactions in the deuterium-neon 14 foot double bubble chamber
We propose to study the interactions of high energy neutrinos in the 14 foot bubble chamber. The target chamber to be filled with Deuterium and the surrounding region filled with nearly pure Neon. An exposure of one million pictures is requested, in order to map out the s and t dependences of the basic interaction in which neutrinos participate
A measurement of B(D+S → φl+ν) B(D+S → φπ+)
Using the CLEO II detector at CESR, we have measured the ratio of branching fractions B (D + S → φl + ν) B (D + S → φπ + ) = 0.54 ± 0.05 ± 0.04 . We use this measurement to obtain a model dependent estimate of B (D + S → φπ + )
Recommended from our members
Resonant double loop antenna development at ORNL
As part of the development of ion cyclotron resonant heating (ICRH) systems for fusion research, Oak Ridge National Laboratory (ORNL) has built resonant double loop (RDL) antennas for the Tokamak Fusion Test Reactor (TFTR) (Princeton Plasma Physics Laboratory, Princeton, NJ, US) and Tore Supra (Centre d'Etudes Nucleaire, Cadarache, France). Each antenna has been designed to deliver 4 MW of power. The electrical circuit and the mechanical philosophy employed are the same for both antennas, but different operating environments lead to substantial differences in the designs of specific components. A description and a comparison of the technologies developed in the two designs are presented. 5 refs., 4 figs., 1 tab
