9 research outputs found

    Finite-difference numerical methods for solving the energy-momentum transport equations in two-valley semiconductors

    Full text link
    Two finite-difference methods for solving the energy-momentum transport equations for electrons in two-valley semiconductors are analyzed. For each method, stability analyses are carried out including the electric field terms and relaxation terms in the equations. Results of large-signal simulations of GaAs IMPATTs using these numerical methods are presented and compared.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25635/1/0000185.pd

    Quantum Energy-Transport and Drift-Diffusion Models

    Full text link
    We show that Quantum Energy-Transport and Quantum Drift-Diffusion models can be derived through diffusion limits of a collisional Wigner equation. The collision operator relaxes to an equilibrium defined through the entropy minimization principle. Both models are shown to be entropic and exhibit fluxes which are related with the state variables through spatially non-local relations. Thanks to an � expansion of these models, � 2 perturbations of the Classical Energy-Transport and Drift-Diffusion models are found. In the Drift-Diffusion case, the quantum correction is the Bohm potential and the model is still entropic. In the Energy-Transport case however, the quantum correction is a rather complex expression and the model cannot be proven entropic.

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore