2 research outputs found

    Atmospheric Heating and Wind Acceleration: Results for Cool Evolved Stars based on Proposed Processes

    Full text link
    A chromosphere is a universal attribute of stars of spectral type later than ~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae binaries) show extended and highly turbulent chromospheres, which develop into slow massive winds. The associated continuous mass loss has a significant impact on stellar evolution, and thence on the chemical evolution of galaxies. Yet despite the fundamental importance of those winds in astrophysics, the question of their origin(s) remains unsolved. What sources heat a chromosphere? What is the role of the chromosphere in the formation of stellar winds? This chapter provides a review of the observational requirements and theoretical approaches for modeling chromospheric heating and the acceleration of winds in single cool, evolved stars and in eclipsing binary stars, including physical models that have recently been proposed. It describes the successes that have been achieved so far by invoking acoustic and MHD waves to provide a physical description of plasma heating and wind acceleration, and discusses the challenges that still remain.Comment: 46 pages, 9 figures, 1 table; modified and unedited manuscript; accepted version to appear in: Giants of Eclipse, eds. E. Griffin and T. Ake (Berlin: Springer

    Coordinated observations of the red dwarf flare star EV Lac in 1998

    No full text
    The results of photometric studies of the flare star EV Lac obtained in the course of cooperative observations in 1998 are presented. No significant brightness variations in IR were found from simultaneous observations of the star in UBVRI and H bands, in coincidence with the observed optical flares. Within the framework of the zonal spottedness model of stars the EV Lac surface inhomogeneity parameters are estimated
    corecore