27 research outputs found

    Expression of mucin synthesis and secretion in human tracheobronchial epithelial cells grown in culture.

    Get PDF
    The effects of culture conditions on growth and differentiation of human tracheobronchial epithelial (HTBE) cells have been defined. Epithelial cells were dissociated from tissues by protease treatment and were plated on tissue culture dishes in F12 medium supplemented with insulin, transferrin, epidermal growth factor, hydrocortisone, cholera toxin, bovine hypothalamus extract, and retinol. HTBE cells did not express any mucociliary function (ciliogenesis or mucin secretion) on tissue culture plastic, but they could be passaged 3 to 5 times with a total of 10 to 25 population doublings. Cells from early passages re-express both these functions when transplanted to tracheal grafts. When tissue culture plates were coated with collagen film or collagen gel substrata, cell attachment and proliferation were stimulated. However, the expression of mucous cell function in culture occurred only when cells were plated on collagen gel substrata and vitamin A (retinol) was present in the medium. Mucous cell differentiation under optimal conditions was defined by ultrastructural studies, by immunologic studies with mucin-specific monoclonal antibodies, and by carbohydrate and amino acid compositional analyses of mucin-like glycoproteins purified from culture medium. These results demonstrate for the first time that HTBE cells can express mucin synthesis and secretion under appropriate culture conditions

    Variation in The Vitamin D Receptor Gene is Associated With Multiple Sclerosis in an Australian Population

    Get PDF
    Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) resulting in accumulating neurological disability. The disorder is more prevalent at higher latitudes. To investigate VDR gene variation using three intragenic restriction fragment length polymorphisms (Apa I, Taq I and Fok I) in an Australian MS case-control population, one hundred and four Australian MS patients were studied with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 104 age-, sex-, and ethnicity-matched controls were investigated as a comparative group. Our results show a significant difference of genotype distribution frequency between the case and control groups for the functional exon 9 VDR marker Taq I (p_Gen = 0.016) and interestingly, a stronger difference for the allelic frequency (p_All = 0.0072). The Apa I alleles were also found to be associated with MS (p_All = 0.04) but genotype frequencies were not significantly different from controls (p_Gen = 0.1). The Taq and Apa variants are in very strong and significant linkage disequilibrium (D' = 0.96, P < 0.0001). The genotypic associations are strongest for the progressive forms of MS (SP-MS and PP-MS). Our results support a role for the VDR gene increasing
    corecore