14 research outputs found

    Structure and in vitro cytocompatibility of the gastropod shell of Helix pomatia

    No full text
    Distinguishing features of biological constructions are high stability and adaptation to their environment. Beside biocompatibility, nontoxicity and degradability these characteristics are demanded for new biomaterials in the field of tissue engineering. This study investigated the chemical composition, the organization and the in vitro osteoconductive potential of the terrestrial gastropod shell (Helix pomatia) on CAL72 and human osteoblast-like cells. Chemical composition of the biomaterial was examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM) was performed to analyze the architecture of the snail shell and the morphology of the seeded cells. A double staining procedure (FDA/PI) and a proliferation test (EZ4U) assessed the viability of the cells. Microscopical images showed the multilayered architecture of the aragonite shell with hexagonal crystals on the inner side. The cells spread well on the biomaterial and the highest proliferation rate could be measured with CAL72 cells on the inner shell surface. The osteoconductive effects of this natural biomaterial could encourage further experiments in the field of tissue engineering

    Osteoblast and bone tissue response to surface modified zirconia and titanium implant materials

    No full text
    Objective This study examined the in vitro and in vivo response of osteoblasts to a novel, acid-etched and sandblasted zirconia surface. Methods Osteoblastic hFOB 1.19 cells were cultured either on electrochemically anodized titanium (TiUnite®), machined titanium (Ti-m), sandblasted and acid-etched zirconia (TZP-proc), and machined zirconia (TZP-A-m). The surface topography of the various substrates was analyzed by 3D laserscan measurements and scanning electron microscopy. At culture days 1, 3, 7, 14, 21, and 28, cell proliferation was determined. Gene expression was analyzed using RT-PCR. Histologic analysis and biomechanical testing was performed on miniature implants placed in the rat femur. Results During the first 7 days, a retarded cell proliferation was observed on the TiUnite® surface. After 28 days of cultivation, cell proliferation reached similar levels on all surfaces. An up-regulation of bone and extracellular matrix specific genes could be seen for TZP-pr oc at day 21. The mean bone-implant contact rate after a healing period of 14 and 28 days, respectively, was higher for TiUnite® than for TZP-proc. At 28 day, the biomechanical test showed significantly higher values for TiUnite® than for all other surfaces. Significance The novel, rough zirconia surface was accepted by hFOB 1.19 cells and integrates into rat bone tissue. However, osseointegration seemed to proceed more slowly and to a lesser extent compared to a moderately roughened titanium surface

    Osseointegration of Osseotite (R) and machined-surfaced titanium implants in membrane-covered critical-sized defects: a histologic and histometric study in dogs

    No full text
    The texture of an implant's surface can influence the rate and extent of bone fixation as expressed by the amount of linear bone-to-implant contact (BIC). The purpose of this study was to compare the bone density and linear BIC between Osseotite((R)) and machined-surface implants placed in bony defects without graft material and covered by a membrane. Thirty 2 mm diameter, 10 mm length custom implants were prepared for this study having a 'split surface,' with one side having the acid-etched surface and the opposite side having a machined surface. Defects were created in the iliac wing of three adult mongrel dogs where a 6-mm-diameter drill was used to generate a 5-mm-deep defect. The implants were inserted into the center of the defect with 5 mm secured into the bone leaving 5 mm free in the defect with a 2 mm gap between the implant and surrounding bone. Expanded polytetrafluroethelyene membranes were placed over the defect sites stabilized with Biotack((R)) pins. The healing times were 2, 3, and 5 months. Histologic and histometric analysis showed significantly lower BIC in the defect region as compared with the portion of implant placed into native bone for both implant surfaces in all groups. There was no difference in BIC values at 2- and 5-month periods between the two surfaces in the regenerated area, while BIC values for Osseotite((R)) surfaces were significantly higher than the machined surfaces at 3 months' healing time. Changes in bone density, observed between the three groups, affected correspondingly the BIC values in both implant surfaces, the effect being more pronounced in the Osseotite((R)) surface

    Microbial adhesion on novel yttria-stabilized tetragonal zirconia (Y-TZP) implant surfaces with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coatings

    No full text
    cited By 2International audienceObjectives: Biomaterial surfaces are at high risk for initial microbial colonization, persistence, and concomitant infection. The rationale of this study was to assess the initial adhesion on novel implant surfaces of Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans upon incubation. Materials and methods: The tested samples were 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) samples with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coating (A) and 3Y-TZP samples coated with ceria-stabilized zirconia-based (Ce-TZP) composite and a-C:H:N (B). Uncoated 3Y-TZP samples (C) and bovine enamel slabs (BES) served as controls. Once the surface was characterized, the adherent microorganisms were quantified by estimating the colony-forming units (CFUs). Microbial vitality was assessed by live/dead staining, and microbial-biomaterial surface topography was visualized by scanning electron microscopy (SEM). Results: Overall, A and B presented the lowest CFU values for all microorganisms, while C sheltered significantly less E. faecalis, P. aeruginosa, and C. albicans than BES. Compared to the controls, B demonstrated the lowest vitality values for E. coli (54.12 %) and C. albicans (67.99 %). Interestingly, A (29.24 %) exhibited higher eradication rates for S. aureus than B (13.95 %). Conclusions: Within the limitations of this study, a-C:H:N-coated 3Y-TZP surfaces tended to harbor less initially adherent microorganisms and selectively interfered with their vitality. Clinical relevance: This could enable further investigation of the new multi-functional zirconia surfaces to confirm their favorable antimicrobial properties in vivo. © 2015, Springer-Verlag Berlin Heidelberg

    Biological Considerations on the Use of Zirconia for Dental Devices

    No full text
    Zirconium oxide, known as zirconia, is a ceramic material with optimal esthetical and mechanical properties. Zirconia stabilized with yttrium oxide has the best properties for medical uses. A stress on ZrO2 surface creates a crystalline modification that opposes to propagation of cracks. Zirconia core for fixed partial dentures (FPD) on anterior and posterior teeth and on implants are now available. Clinical evaluations after 3 years report good percentage of success for zirconia fixed partial denture. Zirconia biocompatibility was studied in vivo and in vitro by orthopedic research; no adverse responses were reported on insertion of ZrO2 samples in bone or muscle. In vitro experimentation showed absence of mutation and a good viability of cells cultured on this material
    corecore