842 research outputs found

    Upper Extremity Deep Vein Thrombosis: A Community-Based Perspective

    Get PDF

    Tuning gaps and phases of a two-subband system in a quantizing magnetic field

    Get PDF
    In this work we study the properties of a two-subband quasi-two-dimensional electron system in a strong magnetic field when the electron filling factor is equal to four. When the cyclotron energy is close to the intersubband splitting the system can be mapped onto a four-level electron system with an effective filling factor of two. The ground state is either a ferromagnetic state or a spin-singlet state, depending on the values of the inter-level splitting and Zeeman energy. The boundaries between these phases are strongly influenced by the inter-electron interaction. A significant exchange-mediated enhancement of the excitation gap results in the suppression of the electron-phonon interaction. The rate of absorption of non-equilibrium phonons is calculated as a function of Zeeman energy and inter-subband splitting. The phonon absorption rate has two peaks as a function of intersubband splitting and has a step-like structure as a function of Zeeman energy

    A lower bound on the local extragalactic magnetic field

    Get PDF
    Assuming that the hard gamma-ray emission of Cen A is a result of synchrotron radiation of ultra-relativistic electrons, we derive a lower bound on the local extragalactic magnetic field, B>108B> 10^{-8} G. This result is consistent with (and close to) upper bounds on magnetic fields derived from consideration of cosmic microwave background distortions and Faraday rotation measurements.Comment: Includes extensive discussion of particle acceleration above 10^20 eV in the hot spot-like region of Cen

    Instability of a Bose-Einstein Condensate with Attractive Interaction

    Full text link
    We study the stability of a Bose-Einstein condensate of harmonically trapped atoms with negative scattering length, specifically lithium 7. Our method is to solve the time-dependent nonlinear Schrodinger equation numerically. For an isolated condensate, with no gain or loss, we find that the system is stable (apart from quantum tunneling) if the particle number N is less than a critical number N_c. For N > N_c, the system collapses to high-density clumps in a region near the center of the trap. The time for the onset of collapse is on the order of 1 trap period. Within numerical uncertainty, the results are consistent with the formation of a "black hole" of infinite density fluctuations, as predicted by Ueda and Huang. We obtain numerically N_c approximately 1251. We then include gain-loss mechanisms, i.e., the gain of atoms from a surrounding "thermal cloud", and the loss due to two- and three-body collisions. The number N now oscillates in a steady state, with a period of about 145 trap periods. We obtain N_c approximately 1260 as the maximum value in the oscillations.Comment: Email correspondence to [email protected] ; 18 pages and 9 EPS figures, using REVTeX and BoxedEPS macro

    Anisotropy at the end of the cosmic ray spectrum?

    Full text link
    The starburst galaxies M82 and NGC253 have been proposed as the primary sources of cosmic rays with energies above 1018.710^{18.7} eV. For energies \agt 10^{20.3} eV the model predicts strong anisotropies. We calculate the probabilities that the latter can be due to chance occurrence. For the highest energy cosmic ray events in this energy region, we find that the observed directionality has less than 1% probability of occurring due to random fluctuations. Moreover, during the first 5 years of operation at Auger, the observation of even half the predicted anisotropy has a probability of less than 10510^{-5} to occur by chance fluctuation. Thus, this model can be subject to test at very small cost to the Auger priors budget and, whatever the outcome of that test, valuable information on the Galactic magnetic field will be obtained.Comment: Final version to be published in Physical Review

    Probing mSUGRA via the Extreme Universe Space Observatory

    Full text link
    An analysis is carried out within mSUGRA of the estimated number of events originating from upward moving ultra-high energy neutralinos that could be detected by the Extreme Universe Space Observatory (EUSO). The analysis exploits a recently proposed technique that differentiates ultra-high energy neutralinos from ultra-high energy neutrinos using their different absorption lengths in the Earth's crust. It is shown that for a significant part of the parameter space, where the neutralino is mostly a Bino and with squark mass 1\sim 1 TeV, EUSO could see ultra-high energy neutralino events with essentially no background. In the energy range 10^9 GeV < E < 10^11 GeV, the unprecedented aperture of EUSO makes the telescope sensitive to neutralino fluxes as low as 1.1 \times 10^{-6} (E/GeV)^{-1.3} GeV^{-1} cm^{-2} yr^{-1} sr^{-1}, at the 95% CL. Such a hard spectrum is characteristic of supermassive particles' NN-body hadronic decay. The case in which the flux of ultra-high energy neutralinos is produced via decay of metastable heavy particles with uniform distribution throughout the universe is analyzed in detail. The normalization of the ratio of the relics' density to their lifetime has been fixed so that the baryon flux produced in the supermassive particle decays contributes to about 1/3 of the events reported by the AGASA Collaboration below 10^{11} GeV, and hence the associated GeV gamma-ray flux is in complete agreement with EGRET data. For this particular case, EUSO will collect between 4 and 5 neutralino events (with 0.3 of background) in ~ 3 yr of running. NASA's planned mission, the Orbiting Wide-angle Light-collectors (OWL), is also briefly discussed in this context.Comment: Some discussion added, final version to be published in Physical Review

    Reconstruction of Black Hole Metric Perturbations from Weyl Curvature

    Get PDF
    Perturbation theory of rotating black holes is usually described in terms of Weyl scalars ψ4\psi_4 and ψ0\psi_0, which each satisfy Teukolsky's complex master wave equation and respectively represent outgoing and ingoing radiation. On the other hand metric perturbations of a Kerr hole can be described in terms of (Hertz-like) potentials Ψ\Psi in outgoing or ingoing {\it radiation gauges}. In this paper we relate these potentials to what one actually computes in perturbation theory, i.e ψ4\psi_4 and ψ0\psi_0. We explicitly construct these relations in the nonrotating limit, preparatory to devising a corresponding approach for building up the perturbed spacetime of a rotating black hole. We discuss the application of our procedure to second order perturbation theory and to the study of radiation reaction effects for a particle orbiting a massive black hole.Comment: 6 Pages, Revtex

    The Renormalization Group in Nuclear Physics

    Full text link
    Modern techniques of the renormalization group (RG) combined with effective field theory (EFT) methods are revolutionizing nuclear many-body physics. In these lectures we will explore the motivation for RG in low-energy nuclear systems and its implementation in systems ranging from the deuteron to neutron stars, both formally and in practice. Flow equation approaches applied to Hamiltonians both in free space and in the medium will be emphasized. This is a conceptually simple technique to transform interactions to more perturbative and universal forms. An unavoidable complication for nuclear systems from both the EFT and flow equation perspective is the need to treat many-body forces and operators, so we will consider these aspects in some detail. We'll finish with a survey of current developments and open problems in nuclear RG.Comment: 37 pages; 49th Schladming Theoretical Physics Winter School lecture notes; to appear in Nucl. Phys. B Proc. Suppl. (2012

    The imposition of Cauchy data to the Teukolsky equation I: The nonrotating case

    Full text link
    Gravitational perturbations about a Kerr black hole in the Newman-Penrose formalism are concisely described by the Teukolsky equation. New numerical methods for studying the evolution of such perturbations require not only the construction of appropriate initial data to describe the collision of two orbiting black holes, but also to know how such new data must be imposed into the Teukolsky equation. In this paper we show how Cauchy data can be incorporated explicitly into the Teukolsky equation for non-rotating black holes. The Teukolsky function % \Psi and its first time derivative tΨ\partial_t \Psi can be written in terms of only the 3-geometry and the extrinsic curvature in a gauge invariant way. Taking a Laplace transform of the Teukolsky equation incorporates initial data as a source term. We show that for astrophysical data the straightforward Green function method leads to divergent integrals that can be regularized like for the case of a source generated by a particle coming from infinity.Comment: 9 pages, REVTEX. Misprints corrected in formulas (2.4)-(2.7). Final version to appear in PR

    Quantum railroads and directed localization at the juncture of quantum Hall systems

    Full text link
    The integer quantum Hall effect (QHE) and one-dimensional Anderson localization (AL) are limiting special cases of a more general phenomenon, directed localization (DL), predicted to occur in disordered one-dimensional wave guides called "quantum railroads" (QRR). Here we explain the surprising results of recent measurements by Kang et al. [Nature 403, 59 (2000)] of electron transfer between edges of two-dimensional electron systems and identify experimental evidence of QRR's in the general, but until now entirely theoretical, DL regime that unifies the QHE and AL. We propose direct experimental tests of our theory.Comment: 11 pages revtex + 3 jpeg figures, to appear in Phys. Rev.
    corecore