447 research outputs found

    Cytokinin Accumulation and an Altered Ethylene Response Mediate the Pleiotropic Phenotype of the Pea Nodulation Mutant R50 (\u3cem\u3esym16\u3c/em\u3e)

    Get PDF
    R50 (sym16), a pleiotropic mutant of Pisum sativum L., is short, has thickened internodes and roots, and has a reduced number of lateral roots and nodules. Its low nodule phenotype can be restored with the application of ethylene inhibitors; furthermore, it can be mimicked by applying cytokinins (CKs) to the roots of the parent line #8216;Sparkle’. Here, we report on the etiolation phenotypes of R50 and ‘Sparkle’, and on the interactive roles of ethylene and CKs in these lines. R50 displayed an altered etiolation phenotype, as it was shorter and thicker, and had more developed leaves than dark-grown ‘Sparkle’. Shoot morphological differences induced by exogenous ethylene or CKs were found to be less severe for R50. Ethylene inhibitor application induced root and shoot elongation and encouraged apical hook opening in both etiolated lines. Liquid chromatography–tandem mass spectrometry analysis indicated that CK concentrations in R50 were higher than in ‘Sparkle’, particularly in mature shoots where the levels were maintained at elevated concentrations. These differences indicate a reduction in the CK catabolism of R50. The accumulation of CKs can be directly related to several traits of R50, with the reduced number of nodules and altered shoot ethylene response being likely indirect effects

    Spectral Properties of the Attractive Hubbard Model

    Full text link
    Deviations from Fermi liquid behavior are well documented in the normal state of the cuprate superconductors, and some of these differences are possibly related to pre-formed pairs appearing at temperatures above T_c. In order to test these ideas we have investigated the attractive Hubbard model within a self-consistent, conserving ladder approximation. In this version of the theory, no feature is present which can be related to the pseudo gap found in the high-T_c materials. Further, the interactions between two-particle bound states change the physics of the superconducting instability in a profound fashion, and lead to a completely different phenomenology that one predicts based on the non-self-consistent version of the same theory.Comment: 4 pages including 2 figures, to appear in the proceedings of the SNS'9

    Upper Extremity Deep Vein Thrombosis: A Community-Based Perspective

    Get PDF

    E151 (sym15), A Pleiotropic Mutant of Pea (Pisum sativum L.), Displays Low Nodule Number, Enhanced Mycorrhizae, Delayed Lateral Root Emergence, and High Root Cytokinin Levels

    Get PDF
    In legumes, the formation of rhizobial and mycorrhizal root symbioses is a highly regulated process which requires close communication between plant and microorganism. Plant mutants that have difficulties establishing symbioses are valuable tools for unravelling the mechanisms by which these symbioses are formed and regulated. Here E151, a mutant of Pisum sativum cv. Sparkle, was examined to characterize its root growth and symbiotic defects. The symbioses in terms of colonization intensity, functionality of micro-symbionts, and organ dominance were compared between the mutant and wild type. The endogenous cytokinin (CK) and abscisic acid (ABA) levels and the effect of the exogenous application of these two hormones were determined. E151 was found to be a low and delayed nodulator, exhibiting defects in both the epidermal and cortical programmes though a few mature and functional nodules develop. Mycorrhizal colonization of E151 was intensified, although the fungal functionality was impaired. Furthermore, E151 displayed an altered lateral root (LR) phenotype compared with that of the wild type whereby LR emergence is initially delayed but eventually overcome. No differences in ABA levels were found between the mutant and the wild type, but non-inoculated E151 exhibited significantly high CK levels. It is hypothesized that CK plays an essential role in differentially mediating the entry of the two micro-symbionts into the cortex; whereas it would inhibit the entry of the rhizobia in that tissue, it would promote that of the fungus. E151 is a developmental mutant which may prove to be a useful tool in further understanding the role of hormones in the regulation of beneficial root symbioses

    A Stimulatory Role for Cytokinin in the Arbuscular Mycorrhizal Symbiosis of Pea

    Get PDF
    The arbuscular mycorrhizal (AM) symbiosis between terrestrial plants and AM fungi is regulated by plant hormones. For most of these, a role has been clearly assigned in this mutualistic interaction; however, there are still contradictory reports for cytokinin (CK). Here, pea plants, the wild type (WT) cv. Sparkle and its mutant E151 (Pssym15), were inoculated with the AM fungus Rhizophagus irregularis. E151 has previously been characterized as possessing high CK levels in non-mycorrhizal (myc-) roots and exhibiting high number of fungal structures in mycorrhizal (myc+) roots. Myc- and myc+ plants were treated 7, 9, and 11 days after inoculation (DAI) with synthetic compounds known to alter CK status. WT plants were treated with a synthetic CK [6-benzylaminopurine (BAP)] or the CK degradation inhibitor INCYDE, whereas E151 plants were treated with the CK receptor antagonist PI-55. At 13 DAI, plant CK content was analyzed by mass spectrometry. The effects of the synthetic compounds on AM colonization were assessed at 28 (WT) or 35 (E151) DAI via a modified magnified intersections method. The only noticeable difference seen between myc- and myc+ plants in terms of CK content was in the levels of nucleotides (NTs). Whereas WT plants responded to fungi by lowering their NT levels, E151 plants did not. Since NTs are thought to be converted into active CK forms, this result suggests that active CKs were synthesized more effectively in WT than in E151. In general, myc+ and myc- WT plants responded similarly to INCYDE by lowering significantly their NT levels and increasing slightly their active CK levels; these responses were less obvious in BAP-treated WT plants. In contrast, the response of E151 plants to PI-55 depended on the plant mycorrhizal status. Whereas treated myc- plants exhibited high NT and low active CK levels, treated myc+ plants displayed low levels of both NTs and active CKs. Moreover, treated WT plants were more colonized than treated E151 plants. We concluded that CKs have a stimulatory role in AM colonization because increased active CK levels were paralleled with increased AM colonization while decreased CK levels corresponded to reduced AM colonization

    Effect of FET geometry on charge ordering of transition metal oxides

    Full text link
    We examine the effect of an FET geometry on the charge ordering phase diagram of transition metal oxides using numerical simulations of a semiclassical model including long-range Coulomb fields, resulting in nanoscale pattern formation. We find that the phase diagram is unchanged for insulating layers thicker than approximately twice the magnetic correlation length. For very thin insulating layers, the onset of a charge clump phase is shifted to lower values of the strength of the magnetic dipolar interaction, and intermediate diagonal stripe and geometric phases can be suppressed. Our results indicate that, for sufficiently thick insulating layers, charge injection in an FET geometry can be used to experimentally probe the intrinsic charge ordering phases in these materials.Comment: 4 pages, 4 postscript figure

    Effects of domain walls on hole motion in the two-dimensional t-J model at finite temperature

    Full text link
    The t-J model on the square lattice, close to the t-J_z limit, is studied by quantum Monte Carlo techniques at finite temperature and in the underdoped regime. A variant of the Hoshen-Koppelman algorithm was implemented to identify the antiferromagnetic domains on each Trotter slice. The results show that the model presents at high enough temperature finite antiferromagnetic (AF) domains which collapse at lower temperatures into a single ordered AF state. While there are domains, holes would tend to preferentially move along the domain walls. In this case, there are indications of hole pairing starting at a relatively high temperature. At lower temperatures, when the whole system becomes essentially fully AF ordered, at least in finite clusters, holes would likely tend to move within phase separated regions. The crossover between both states moves down in temperature as doping increases and/or as the off-diagonal exchange increases. The possibility of hole motion along AF domain walls at zero temperature in the fully isotropic t-J is discussed.Comment: final version, to appear in Physical Review

    Direct Observation of a One Dimensional Static Spin Modulation in Insulating La1.95Sr0.05CuO4

    Full text link
    We report the results of an extensive elastic neutron scattering study of the incommensurate (IC) static spin correlations in La1.95Sr0.05CuO4 which is an insulating spin glass at low temperatures. The present neutron scattering experiments on the same x=0.05 crystal employ a narrower instrumental Q-resolution and thereby have revealed that the crystal has only two orthorhombic twins at low temperatures with relative populations of 2:1. We find that, in a single twin, only two satellites are observed at (1, +/-0.064, L)(ortho) and (0, 1+/-0.064, L)(ortho), that is, the modulation vector is only along the orthorhombic b*-axis. This demonstrates unambiguously that La1.95Sr0.05CuO4 has a one-dimensional static diagonal spin modulation at low temperatures, consistent with certain stripe models. We have also reexamined the x=0.04 crystal that previously was reported to show a single commensurate peak. By mounting the sample in the (H, K, 0) zone, we have discovered that the x=0.04 sample in fact has the same IC structure as the x=0.05x=0.05 sample. The incommensurability parameter d for x=0.04 and 0.05, where d is the distance from (1/2, 1/2) in tetragonal reciprocal lattice units, follows the linear relation d=x. These results demonstrate that the insulator to superconductor transition in the under doped regime (0.05 </= x </= 0.06) in La2-xSrxCuO4 is coincident with a transition from diagonal to collinear static stripes at low temperatures thereby evincing the intimate coupling between the one dimensional spin density modulation and the superconductivity.Comment: 9 pages 8 figure

    Excitation of High-Spin States by Inelastic Proton Scattering

    Get PDF
    This work was supported by National Science Foundation Grant PHY 75-00289 and Indiana Universit

    Conductivity sum rule, implication for in-plane dynamics and c-axis response

    Full text link
    Recently observed cc-axis optical sum rule violations indicate non-Fermi liquid in-plane behavior. For coherent cc-axis coupling, the observed flat, nearly frequency independent cc-axis conductivity σ1(ω)\sigma_{1}(\omega) implies a large in-plane scattering rate Γ\Gamma around (0,π)(0,\pi) and therefore any pseudogap that might form at low frequency in the normal state will be smeared. On the other hand incoherent cc-axis coupling places no restriction on the value of Γ\Gamma and gives a more consistent picture of the observed sum rule violation which, we find in some cases, can be less than half.Comment: 3 figures. To appear in PR
    • …
    corecore