30 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    A pulsatile developing flow in a bend

    No full text
    Low frequency pulsatile flow of an incompressible viscous fluid has been numerically investigated in a rigid 90° bend of circular cross-section, using the finite-volume method. The governing parameters are as follows : amplitude ratio of 1.25, Womersley parameter of 4, peak Reynolds number of 358, peak Dean number of 113, Strouhal number ranging from 0.05 to 0.45. With this set of input data, no flow reversal is observed and a single axial vortex occurs in the half cross-section. Upstream and downstream effects of the bend are mainly characterized by an inward shift of the peak axial velocity in the upstream straight tube and the persistency of the secondary motions several diameters down the exit straight pipe. Secondary motions, present in steady flow, weaken greatly when the unsteady axial component of the flow (WW) is lower than the mean flow Wˉ\bar{W}. The axial shear stress τa\tau_{\rm a}, whose maximum is more often located at the outer part of the bend, increases and remains nearly constant about 8 diameters downstream from the bend inlet. The circumferential shear stress τc\tau_{\rm c} maximum, located slightly towards the outer bend, is 28% of τa\tau_{\rm a} maximum, and 20% when WWW W, and locally at the inner edge.Un Ă©coulement pulsĂ© Ă  basse frĂ©quence d'un fluide incompressible visqueux a Ă©tĂ© Ă©tudiĂ© numĂ©riquement dans un coude, Ă  90°, de parois rigides et de section droite circulaire et constante, par la mĂ©thode des volumes finis. Les valeurs des paramĂštres adimensionnels gouvernant l'Ă©coulement sont : un rapport d'amplitude de 1,25, un paramĂštre de Womersley de 4, un nombre de Reynolds crĂȘte de 358, un nombre de Dean crĂȘte de 113 ; le nombre de Strouhal varie entre 0,05 et 0,45. Aucune inversion du courant principal n'est observĂ© et un unique vortex dans chaque demi-section droite apparaĂźt. Les effets sur les tubes droits, l'un prĂ©cĂšdant et l'autre suivant le coude sont caractĂ©risĂ©s par un dĂ©calage du pic de vitesse axiale vers le bord interne du tube en amont et la persistance de l'Ă©coulement secondaire sur une longueur de plusieurs diamĂštres en aval. Les courants transversaux sont de trĂšs faible intensitĂ© quand la vitesse dĂ©bitante de l'Ă©coulement pulsĂ© est beaucoup plus petite que la vitesse moyenne (composante stationnaire). Le cisaillement axial dont le maximum est situĂ© sur la bord externe de la majeure partie du coude augmente en aval de la section d'entrĂ©e du coude puis reste constant sur une longueur d'environ 8 diamĂštres. Le maximum de la contrainte de cisaillement circonfĂ©rentiel est localisĂ© lĂ©gĂšrement vers le cĂŽtĂ© externe du coude ; il est beaucoup plus faible que celui de la contrainte exiale (20 Ă  28 %). Les valeurs de ces contraintes augmentent pendant la phase accĂ©lĂ©ratrice. La rĂ©gion Ă  faible cisaillement est situĂ©e au bord interne du coude sauf dans une courte zone d'entrĂ©e. Cependant, la prĂ©sence d'un coude ne favorise le dĂ©pĂŽt de particules solides circulantes que pendant la pĂ©riode de cycle Ă  forte vitesse par rapport Ă  une conduite rectiligne
    corecore