46 research outputs found

    Bio-analytical Assay Methods used in Therapeutic Drug Monitoring of Antiretroviral Drugs-A Review

    Get PDF

    Nuclear magnetic resonance studies of blood plasma and urine from subjects with chronic renal failure: identification of trimethylamine-N-oxide

    No full text
    We have used 1H-, 13C- and 14N-NMR spectroscopy to investigate the constituents of plasma and urine in 16 patients with chromic renal failure (CRF). Resonances not previously observed in spectra of plasma from healthy volunteers were seen in CRF plasma, including those for trimethylamine-N-oxide (TMAO) and dimethylamine (DMA). A possible analogy with the plasma of elasmobranch fishes, in which TMAO stabilizes proteins in the presence of very high urea concentrations, is noted. The intensity of the TMAO resonance for CRF subjects was correlated with the plasma concentration of urea (R = 0.55) and creatinine (R = 0.74), suggesting that the presence of TMAO is closely related to the degree of renal failure. When normal subjects ate a meal of TMAO-containing fish, TMAO appeared rapidly in the plasma and in the urine. Thus TMAO is efficiently cleared by the healthy kidney. Differences in the interaction of lactate with plasma proteins were detected by NMR, suggesting that uraemia impairs their transport roles

    Climatic control of fluvial-lacustrine cyclicity in the Cretaceous Cordilleran Foreland Basin, western United States

    Full text link
    Tectono-stratigraphic models of foredeep sedimentation have generally presumed a direct link between changing rates of tectonism and concomitant sedimentological response as manifested by change in thickness, composition or depositional environment of sediment accumulating in adjacent basins. Lacustrine limestone units within the early Cretaceous fluvial/lacustrine Gannett Group of western Wyoming exhibit systematic variation in several geochemical proxies of relative rates of precipitation and evaporation, indicating that lakewater chemistry was controlled by variation in regional climate. Change in proportion of allochthonous terrigenous clastic vs. autochthonous carbonate deposition, as well as carbonate Mg/Ca ratio and stable isotopic composition, occurs at two scales. Metre-scale alternation of micritic limestone and argillaceous marl is accompanied by mineralogical and isotopic variation within individual beds, indicating preferential carbonate accumulation during intervals of decreased regional meteoric precipitation relative to lake-surface evaporation. Limestone deposition began during intervals of maximum aridity, and decreased as increased meteoric precipitation-driven flux of terrigenous clastic sediment overwhelmed sites of carbonate accumulation. Similar upsection variation in limestone mineralogy and isotopic composition at a scale of tens of metres reflects the multiple processes of long-term increase in meteoric precipitation and lakewater freshening prior to influx of terrigenous sediment, across-basin fluvial-deltaic progradation, and renewed accumulation of riverine terrigenous units. Such trends suggest that formation-scale alternation between fluvial clastic and lacustrine carbonate deposition was controlled by climate change.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75290/1/j.1365-3091.1996.tb02020.x.pd
    corecore