68 research outputs found

    Spin-polarized current amplification and spin injection in magnetic bipolar transistors

    Get PDF
    The magnetic bipolar transistor (MBT) is a bipolar junction transistor with an equilibrium and nonequilibrium spin (magnetization) in the emitter, base, or collector. The low-injection theory of spin-polarized transport through MBTs and of a more general case of an array of magnetic {\it p-n} junctions is developed and illustrated on several important cases. Two main physical phenomena are discussed: electrical spin injection and spin control of current amplification (magnetoamplification). It is shown that a source spin can be injected from the emitter to the collector. If the base of an MBT has an equilibrium magnetization, the spin can be injected from the base to the collector by intrinsic spin injection. The resulting spin accumulation in the collector is proportional to exp(qVbe/kBT)\exp(qV_{be}/k_BT), where qq is the proton charge, VbeV_{be} is the bias in the emitter-base junction, and kBTk_B T is the thermal energy. To control the electrical current through MBTs both the equilibrium and the nonequilibrium spin can be employed. The equilibrium spin controls the magnitude of the equilibrium electron and hole densities, thereby controlling the currents. Increasing the equilibrium spin polarization of the base (emitter) increases (decreases) the current amplification. If there is a nonequilibrium spin in the emitter, and the base or the emitter has an equilibrium spin, a spin-valve effect can lead to a giant magnetoamplification effect, where the current amplifications for the parallel and antiparallel orientations of the the equilibrium and nonequilibrium spins differ significantly. The theory is elucidated using qualitative analyses and is illustrated on an MBT example with generic materials parameters.Comment: 14 PRB-style pages, 10 figure

    Quasars and their host galaxies

    Full text link
    This review attempts to describe developments in the fields of quasar and quasar host galaxies in the past five. In this time period, the Sloan and 2dF quasar surveys have added several tens of thousands of quasars, with Sloan quasars being found to z>6. Obscured, or partially obscured quasars have begun to be found in significant numbers. Black hole mass estimates for quasars, and our confidence in them, have improved significantly, allowing a start on relating quasar properties such as radio jet power to fundamental parameters of the quasar such as black hole mass and accretion rate. Quasar host galaxy studies have allowed us to find and characterize the host galaxies of quasars to z>2. Despite these developments, many questions remain unresolved, in particular the origin of the close relationship between black hole mass and galaxy bulge mass/velocity dispersion seen in local galaxies.Comment: Review article, to appear in Astrophysics Update

    Active Galactic Nuclei at the Crossroads of Astrophysics

    Get PDF
    Over the last five decades, AGN studies have produced a number of spectacular examples of synergies and multifaceted approaches in astrophysics. The field of AGN research now spans the entire spectral range and covers more than twelve orders of magnitude in the spatial and temporal domains. The next generation of astrophysical facilities will open up new possibilities for AGN studies, especially in the areas of high-resolution and high-fidelity imaging and spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These studies will address in detail a number of critical issues in AGN research such as processes in the immediate vicinity of supermassive black holes, physical conditions of broad-line and narrow-line regions, formation and evolution of accretion disks and relativistic outflows, and the connection between nuclear activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical Symposia Serie

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.</p

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol�which is a marker of cardiovascular risk�changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95 credible interval 3.7 million�4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world. © 2020, The Author(s), under exclusive licence to Springer Nature Limited

    Adsorption of Benzene and Ethanol on Activated Carbon, MCM-41 and Zeolite Y

    No full text
    The adsorption of benzene and ethanol at 0, 15 and 30°C on to a number of adsorbents were studied to investigate their performance in the removal of VOCs. The isotherms were measured over a wide range of relative pressure in order to study the contribution of the micropore adsorption and the capillary condensation in mesopores. A model describing the adsorption of subcritical vapours was tested against the isotherm data. It was found that results obtained from the isotherm fitting of benzene and ethanol experimental data were consistent with each other and also with the results of nitrogen adsorption at 77 K. Among the adsorbents studied, Ajax active carbon was found to be the most practical adsorbent for the removal of VOCs
    corecore