22 research outputs found

    Fluctuation Relations for Diffusion Processes

    Full text link
    The paper presents a unified approach to different fluctuation relations for classical nonequilibrium dynamics described by diffusion processes. Such relations compare the statistics of fluctuations of the entropy production or work in the original process to the similar statistics in the time-reversed process. The origin of a variety of fluctuation relations is traced to the use of different time reversals. It is also shown how the application of the presented approach to the tangent process describing the joint evolution of infinitesimally close trajectories of the original process leads to a multiplicative extension of the fluctuation relations.Comment: 38 page

    State transfer in dissipative and dephasing environments

    Full text link
    By diagonalization of a generalized superoperator for solving the master equation, we investigated effects of dissipative and dephasing environments on quantum state transfer, as well as entanglement distribution and creation in spin networks. Our results revealed that under the condition of the same decoherence rate γ\gamma, the detrimental effects of the dissipative environment are more severe than that of the dephasing environment. Beside this, the critical time tct_c at which the transfer fidelity and the concurrence attain their maxima arrives at the asymptotic value t0=π/2λt_0=\pi/2\lambda quickly as the spin chain length NN increases. The transfer fidelity of an excitation at time t0t_0 is independent of NN when the system subjects to dissipative environment, while it decreases as NN increases when the system subjects to dephasing environment. The average fidelity displays three different patterns corresponding to N=4r+1N=4r+1, N=4r1N=4r-1 and N=2rN=2r. For each pattern, the average fidelity at time t0t_0 is independent of rr when the system subjects to dissipative environment, and decreases as rr increases when the system subjects to dephasing environment. The maximum concurrence also decreases as NN increases, and when NN\rightarrow\infty, it arrives at an asymptotic value determined by the decoherence rate γ\gamma and the structure of the spin network.Comment: 12 pages, 6 figure

    State transfer in intrinsic decoherence spin channels

    Full text link
    By analytically solving the master equation, we investigate quantum state transfer, creation and distribution of entanglement in the model of Milburn's intrinsic decoherence. Our results reveal that the ideal spin channels will be destroyed by the intrinsic decoherence environment, and the detrimental effects become severe as the decoherence rate γ\gamma and the spin chain length NN increase. For infinite evolution time, both the state transfer fidelity and the concurrence of the created and distributed entanglement approach steady state values, which are independent of the decoherence rate γ\gamma and decrease as the spin chain length NN increases. Finally, we present two modified spin chains which may serve as near perfect spin channels for long distance state transfer even in the presence of intrinsic decoherence environments F[ρ(t)]\mathcal {F}{[\rho(t)]}.Comment: 11 pages, 11 figure

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Approaches for the simultaneous detection of thiamphenicol, florfenicol and florfenicol amine using immunochemical techniques

    No full text
    Thiamphenicol and florfenicol are antibacterial agents permitted for use as veterinary drugs in animals used for food production. However, as the EU has established maximum residue limits for both and the metabolite florfenicol amine, there is a requirement to monitor animal food products for their residues. In this study antisera were generated which can simultaneously detect thiamphenicol, florfenicol and florfenicol amine in an immunoassay. Details of the various coupling techniques employed to prepare immunogens and enzyme labels are provided and the antibodies produced have been assessed, in homologous and heterologous ELISA formats, with respect to sensitivity and specificity. It was found that while the antisera raised to thiamphenicol and florfenicol generally performed better in a heterologous set up, those raised to florfenicol amine were not only less affected by the assay format but also produced the most sensitive antibodies to all three target analytes. Antisera matched previous sensitivity (IC50&lt;1ngmL-1) but had improved cross-reactivity (&gt;100%) to thiamphenicol and florfenicol.</p
    corecore