127 research outputs found
The four fixed points of scale invariant single field cosmological models
We introduce a new set of flow parameters to describe the time dependence of
the equation of state and the speed of sound in single field cosmological
models. A scale invariant power spectrum is produced if these flow parameters
satisfy specific dynamical equations. We analyze the flow of these parameters
and find four types of fixed points that encompass all known single field
models. Moreover, near each fixed point we uncover new models where the scale
invariance of the power spectrum relies on having simultaneously time varying
speed of sound and equation of state. We describe several distinctive new
models and discuss constraints from strong coupling and superluminality.Comment: 24 pages, 6 figure
General conditions for scale-invariant perturbations in an expanding universe
We investigate the general properties of expanding cosmological models which
generate scale-invariant curvature perturbations in the presence of a variable
speed of sound. We show that in an expanding universe, generation of a
super-Hubble, nearly scale-invariant spectrum of perturbations over a range of
wavelengths consistent with observation requires at least one of three
conditions: (1) accelerating expansion, (2) a speed of sound faster than the
speed of light, or (3) super-Planckian energy density.Comment: 4 pages, RevTe
Can surface flux transport account for the weak polar field in cycle 23?
To reproduce the weak magnetic field on the polar caps of the Sun observed
during the declining phase of cycle 23 poses a challenge to surface flux
transport models since this cycle has not been particularly weak. We use a
well-calibrated model to evaluate the parameter changes required to obtain
simulated polar fields and open flux that are consistent with the observations.
We find that the low polar field of cycle 23 could be reproduced by an increase
of the meridional flow by 55% in the last cycle. Alternatively, a decrease of
the mean tilt angle of sunspot groups by 28% would also lead to a similarly low
polar field, but cause a delay of the polar field reversals by 1.5 years in
comparison to the observations.Comment: 9 pages, 8 figures, Space Science Reviews, accepte
E1 amplitudes, lifetimes, and polarizabilities of the low-lying levels of atomic ytterbium
The results of ab initio calculation of E1 amplitudes, lifetimes,and
polarizabilities for several low-lying levels of ytterbium are reported. The
effective Hamiltonian for the valence electrons has been constructed in the
frame of CI+MBPT method and solutions of many electron equation are found.Comment: 11 pages, submitted to Phys.Rev.
Optimal bispectrum constraints on single-field models of inflation
We use WMAP 9-year bispectrum data to constrain the free parameters of an 'effective field theory' describing fluctuations in single-field inflation. The Lagrangian of the theory contains a finite number of operators associated with unknown mass scales. Each operator produces a fixed bispectrum shape, which we decompose into partial waves in order to construct a likelihood function. Based on this likelihood we are able to constrain four linearly independent combinations of the mass scales. As an example of our framework we specialize our results to the case of 'Dirac-Born-Infeld' and 'ghost' inflation and obtain the posterior probability for each model, which in Bayesian schemes is a useful tool for model comparison. Our results suggest that DBI-like models with two or more free parameters are disfavoured by the data by comparison with single parameter models in the same class
The Pseudo-Conformal Universe: Scale Invariance from Spontaneous Breaking of Conformal Symmetry
We present a novel theory of the very early universe which addresses the
traditional horizon and flatness problems of big bang cosmology and predicts a
scale invariant spectrum of perturbations. Unlike inflation, this scenario
requires no exponential accelerated expansion of space-time. Instead, the early
universe is described by a conformal field theory minimally coupled to gravity.
The conformal fields develop a time-dependent expectation value which breaks
the flat space so(4,2) conformal symmetry down to so(4,1), the symmetries of de
Sitter, giving perturbations a scale invariant spectrum. The solution is an
attractor, at least in the case of a single time-dependent field. Meanwhile,
the metric background remains approximately flat but slowly contracts, which
makes the universe increasingly flat, homogeneous and isotropic, akin to the
smoothing mechanism of ekpyrotic cosmology. Our scenario is very general,
requiring only a conformal field theory capable of developing the appropriate
time-dependent expectation values, and encompasses existing incarnations of
this idea, specifically the U(1) model of Rubakov and the Galileon Genesis
scenario. Its essential features depend only on the symmetry breaking pattern
and not on the details of the underlying lagrangian. It makes generic
observational predictions that make it potentially distinguishable from
standard inflation, in particular significant non-gaussianities and the absence
of primordial gravitational waves.Comment: 51 pages, 3 figures. v2 discussion and refs added, minus sign in
transformation laws fixed. Version appearing in JCA
Inflationary signatures of single-field models beyond slow-roll
If the expansion of the early Universe was not close to de Sitter, the
statistical imprints of the primordial density perturbation on the cosmic
microwave background can be quite different from those derived in slow-roll
inflation. In this paper we study the inflationary signatures of all
single-field models which are free of ghost-like instabilities. We allow for a
rapid change of the Hubble parameter and the speed of sound of scalar
fluctuations, in a way that is compatible with a nearly scale-invariant
spectrum of perturbations, as supported by current cosmological observations.
Our results rely on the scale-invariant approximation, which is different from
the standard slow-roll approximation. We obtain the propagator of scalar
fluctuations and compute the bispectrum, keeping next-order corrections
proportional to the deviation of the spectral index from unity. These theories
offer an explicit example where the shape and scale-dependences of the
bispectrum are highly non-trivial whenever slow-roll is not a good
approximation.Comment: v1: 36 pages, including tables, appendices and references. v2:
abstract improved, references added, minor clarifications throughout the
text; matches version published in JCA
Non-linear Realizations of Conformal Symmetry and Effective Field Theory for the Pseudo-Conformal Universe
The pseudo-conformal scenario is an alternative to inflation in which the
early universe is described by an approximate conformal field theory on flat,
Minkowski space. Some fields acquire a time-dependent expectation value, which
breaks the flat space so(4,2) conformal algebra to its so(4,1) de Sitter
subalgebra. As a result, weight-0 fields acquire a scale invariant spectrum of
perturbations. The scenario is very general, and its essential features are
determined by the symmetry breaking pattern, irrespective of the details of the
underlying microphysics. In this paper, we apply the well-known coset technique
to derive the most general effective lagrangian describing the Goldstone field
and matter fields, consistent with the assumed symmetries. The resulting action
captures the low energy dynamics of any pseudo-conformal realization, including
the U(1)-invariant quartic model and the Galilean Genesis scenario. We also
derive this lagrangian using an alternative method of curvature invariants,
consisting of writing down geometric scalars in terms of the conformal mode.
Using this general effective action, we compute the two-point function for the
Goldstone and a fiducial weight-0 field, as well as some sample three-point
functions involving these fields.Comment: 49 pages. v2: minor corrections, added references. v3: minor edits,
version appearing in JCA
Classical dynamics of a two-species Bose-Einstein condensate in the presence of nonlinear maser processes
The stability analysis of a generalized Dicke model, in the semi-classical
limit, describing the interaction of a two-species Bose-Einstein condensate
driven by a quantized field in the presence of Kerr and spontaneous parametric
processes is presented. The transitions from Rabi to Josephson dynamics are
identified depending on the relative value of the involved parameters.
Symmetry-breaking dynamics are shown for both types of coherent oscillations
due to the quantized field and nonlinear optical processes.Comment: 12 pages, 5 figures. Accepted for publication as chapter in
"Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations in
Nonlinear Systems
Universality of Frequency and Field Scaling of the Conductivity Measured by Ac-Susceptibility of a Ybco-Film
Utilizing a novel and exact inversion scheme, we determine the complex linear
conductivity from the linear magnetic ac-susceptibility
which has been measured from 3\,mHz to 50\,MHz in fields between 0.4\,T and
4\,T applied parallel to the c-axis of a 250\,nm thin disk. The frequency
derivative of the phase and the dynamical scaling of
above and below provide clear evidence for a
continuous phase transition at to a generic superconducting state. Based
on the vortex-glass scaling model, the resulting critical exponents and
are close to those frequently obtained on films by other means and
associated with an 'isotropic' vortex glass. The field effect on
can be related to the increase of the glass coherence length,
.Comment: 8 pages (5 figures upon request), revtex 3.0, APK.94.01.0
- …