102 research outputs found
On the Relativistic Formulation of Matter
A critical analysis of the relativistic formulation of matter reveals some
surprising inconsistencies and paradoxes. Corrections are discovered which lead
to the long-sought-after equality of the gravitational and inertial masses,
which are otherwise different in general relativity.
Realizing the potentially great impact of the discovered corrections, an
overview of the situation is provided resulting from the newly discovered
crisis, amid the evidences defending the theory.Comment: In press with Astrophys. Space Sci. (The final publication can be
seen at springerlink.com
A Note on the Integral Formulation of Einstein's Equations Induced on a Braneworld
We revisit the integral formulation (or Green's function approach) of
Einstein's equations in the context of braneworlds. The integral formulation
has been proposed independently by several authors in the past, based on the
assumption that it is possible to give a reinterpretation of the local metric
field in curved spacetimes as an integral expression involving sources and
boundary conditions. This allows one to separate source-generated and
source-free contributions to the metric field. As a consequence, an exact
meaning to Mach's Principle can be achieved in the sense that only
source-generated (matter fields) contributions to the metric are allowed for;
universes which do not obey this condition would be non-Machian. In this paper,
we revisit this idea concentrating on a Randall-Sundrum-type model with a
non-trivial cosmology on the brane. We argue that the role of the surface term
(the source-free contribution) in the braneworld scenario may be quite subtler
than in the 4D formulation. This may pose, for instance, an interesting issue
to the cosmological constant problem.Comment: 10 pages, no figures, accepted for publication in the General
Relativity and Gravitation Journa
Einstein energy associated with the Friedmann -Robertson -Walker metric
Following Einstein's definition of Lagrangian density and gravitational field
energy density (Einstein, A., Ann. Phys. Lpz., 49, 806 (1916); Einstein, A.,
Phys. Z., 19, 115 (1918); Pauli, W., {\it Theory of Relativity}, B.I.
Publications, Mumbai, 1963, Trans. by G. Field), Tolman derived a general
formula for the total matter plus gravitational field energy () of an
arbitrary system (Tolman, R.C., Phys. Rev., 35(8), 875 (1930); Tolman, R.C.,
{\it Relativity, Thermodynamics & Cosmology}, Clarendon Press, Oxford, 1962));
Xulu, S.S., arXiv:hep-th/0308070 (2003)). For a static isolated system, in
quasi-Cartesian coordinates, this formula leads to the well known result , where is the
determinant of the metric tensor and is the energy momentum tensor of
the {\em matter}. Though in the literature, this is known as "Tolman Mass", it
must be realized that this is essentially "Einstein Mass" because the
underlying pseudo-tensor here is due to Einstein. In fact, Landau -Lifshitz
obtained the same expression for the "inertial mass" of a static isolated
system without using any pseudo-tensor at all and which points to physical
significance and correctness of Einstein Mass (Landau, L.D., and Lifshitz,
E.M., {\it The Classical Theory of Fields}, Pergamon Press, Oxford, 2th ed.,
1962)! For the first time we apply this general formula to find an expression
for for the Friedmann- Robertson -Walker (FRW) metric by using the same
quasi-Cartesian basis. As we analyze this new result, physically, a spatially
flat model having no cosmological constant is suggested. Eventually, it is seen
that conservation of is honoured only in the a static limit.Comment: By mistake a marginally different earlier version was loaded, now the
journal version is uploade
Transition from decelerated to accelerated cosmic expansion in braneworld universes
Braneworld theory provides a natural setting to treat, at a classical level,
the cosmological effects of vacuum energy. Non-static extra dimensions can
generally lead to a variable vacuum energy, which in turn may explain the
present accelerated cosmic expansion. We concentrate our attention in models
where the vacuum energy decreases as an inverse power law of the scale factor.
These models agree with the observed accelerating universe, while fitting
simultaneously the observational data for the density and deceleration
parameter. The redshift at which the vacuum energy can start to dominate
depends on the mass density of ordinary matter. For Omega = 0.3, the transition
from decelerated to accelerated cosmic expansion occurs at z approx 0.48 +/-
0.20, which is compatible with SNe data. We set a lower bound on the
deceleration parameter today, namely q > - 1 + 3 Omega/2, i.e., q > - 0.55 for
Omega = 0.3. The future evolution of the universe crucially depends on the time
when vacuum starts to dominate over ordinary matter. If it dominates only
recently, at an epoch z < 0.64, then the universe is accelerating today and
will continue that way forever. If vacuum dominates earlier, at z > 0.64, then
the deceleration comes back and the universe recollapses at some point in the
distant future. In the first case, quintessence and Cardassian expansion can be
formally interpreted as the low energy limit of our model, although they are
entirely different in philosophy. In the second case there is no correspondence
between these models and ours.Comment: In V2 typos are corrected and one reference is added for section 1.
To appear in General Relativity and Gravitatio
Kaluza-Klein Type Robertson Walker Cosmological Model With Dynamical Cosmological Term
In this paper we have analyzed the Kaluza-Klein type Robertson Walker (RW)
cosmological models by considering three different forms of variable :
, and
. It is found that, the connecting free parameters of the
models with cosmic matter and vacuum energy density parameters are equivalent,
in the context of higher dimensional space time. The expression for the look
back time, luminosity distance and angular diameter distance are also derived.
This work has thus generalized to higher dimensions the well-known results in
four dimensional space time. It is found that there may be significant
difference in principle at least, from the analogous situation in four
dimensional space time.Comment: 16 pages, no figur
Accelerated expansion from braneworld models with variable vacuum energy
In braneworld models a variable vacuum energy may appear if the size of the
extra dimension changes during the evolution of the universe. In this scenario
the acceleration of the universe is related not only to the variation of the
cosmological term, but also to the time evolution of and, possibly, to the
variation of other fundamental "constants" as well. This is because the
expansion rate of the extra dimension appears in different contexts, notably in
expressions concerning the variation of rest mass and electric charge. We
concentrate our attention on spatially-flat, homogeneous and isotropic,
brane-universes where the matter density decreases as an inverse power of the
scale factor, similar (but at different rate) to the power law in FRW-universes
of general relativity.
We show that these braneworld cosmologies are consistent with the observed
accelerating universe and other observational requirements. In particular,
becomes constant and asymptotically in
time. Another important feature is that the models contain no "adjustable"
parameters. All the quantities, even the five-dimensional ones, can be
evaluated by means of measurements in 4D. We provide precise constrains on the
cosmological parameters and demonstrate that the "effective" equation of state
of the universe can, in principle, be determined by measurements of the
deceleration parameter alone. We give an explicit expression relating the
density parameters , and the deceleration
parameter . These results constitute concrete predictions that may help in
observations for an experimental/observational test of the model.Comment: References added, typos correcte
Five Dimensional Cosmological Models in General Relativity
A Five dimensional Kaluza-Klein space-time is considered in the presence of a
perfect fluid source with variable G and . An expanding universe is
found by using a relation between the metric potential and an equation of
state. The gravitational constant is found to decrease with time as whereas the variation for the cosmological constant follows as
, and
where is the equation of state parameter and is the scale factor.Comment: 13 pages, 4 figures, accepted in Int. J. Theor. Phy
Cosmological Dynamics of Phantom Field
We study the general features of the dynamics of the phantom field in the
cosmological context. In the case of inverse coshyperbolic potential, we
demonstrate that the phantom field can successfully drive the observed current
accelerated expansion of the universe with the equation of state parameter
. The de-Sitter universe turns out to be the late time attractor
of the model. The main features of the dynamics are independent of the initial
conditions and the parameters of the model. The model fits the supernova data
very well, allowing for at 95 % confidence level.Comment: Typos corrected. Some clarifications and references added. To appear
in Physical Review
Generation of Bianchi type V cosmological models with varying -term
Bianchi type V perfect fluid cosmological models are investigated with
cosmological term varying with time. Using a generation technique
(Camci {\it et al.}, 2001), it is shown that the Einstein's field equations are
solvable for any arbitrary cosmic scale function. Solutions for particular
forms of cosmic scale functions are also obtained. The cosmological constant is
found to be decreasing function of time, which is supported by results from
recent type Ia supernovae observations. Some physical aspects of the models are
also discussed.Comment: 16 pages, 3 figures, submitted to CJ
Plane-symmetric inhomogeneous magnetized viscous fluid universe with a variable
The behavior of magnetic field in plane symmetric inhomogeneous cosmological
models for bulk viscous distribution is investigated. The coefficient of bulk
viscosity is assumed to be a power function of mass density . The values of cosmological constant for these models are
found to be small and positive which are supported by the results from recent
supernovae Ia observations. Some physical and geometric aspects of the models
are also discussed.Comment: 18 pages, LaTex, no figur
- …
