34 research outputs found

    Stress Corrosion Cracking Crack Growth Behavior of Type 316L Stainless Steel Weld Metals in Boiling Water Reactor Environments

    No full text
    Thermal aging and consequent embrittlement of materials are ongoing issues in cast and duplex stainless steels. Spinodal decomposition is largely responsible for the well-known "475 degrees C" embrittlement that results in drastic reductions in ductility and toughness in cast materials. This process is also operative in welds in cast or wrought stainless steels where delta ferrite is present. While the embrittlement can occur after several hundred hours of aging at 475 degrees C, it can also occur at lower temperatures where ductility reductions have been observed after tens of thousands of hours at 300 degrees C. The effect of thermal aging on mechanical properties, including tensile, toughness, fatigue, and static crack growth, has been investigated at room temperature and in 288 degrees C high-purity water simulating boiling water reactor (BWR) operating conditions. The measurements of tensile, microhardness, and Charpy-impact energy show an increase in strength and a decrease in impact energy after aging for up to 10,000 h at 430 degrees C and 400 degrees C. Stress corrosion crack (SCC) growth rates have been measured for as-welded and 5,000-h/400 degrees C aged weld metal at 288 degrees C in high-purity water containing 300 ppb of oxygen. Fracture toughness (J(IC)) have been measured in the 5,000-h/ 400 degrees C aged weld metal and estimated in the other conditions. Crack growth rates for material in the as-welded and aged metalfor 5,000 h at 400 degrees C have been measured and are generally within the scatter band for wrought material, although the aged material data fall at the high end. Unusual in situ unstable fracture behavior has been experienced for material that contains an SCC 'precrack" at toughness values significantly below (<50%) the room temperature fracture toughness. In situ fracture toughness with a fatigue precrack is still significantly below the air values. This behavior, termed "environmental fracture," requires further investigation.close4

    Mechanical properties of JK2LB at 4K

    No full text
    The jacket of the central solenoid (CS) for ITER is designed to support cyclic tension load generated by the electro-magnetic hoop force during operation. Therefore, the CS jacket material requires high tensile strength, high ductility, and high resistance to fatigue. JK2LB was developed in Japan as a candidate material for CS jacket by using low carbon and boron additions in JK2. The preliminary data of mechanical property for JK2LB without cold work has shown improvement of ductility in comparison to JK2. As a routine multi-party verification process, a series of new mechanical tests including tensile, fatigue crack growth and fracture toughness have been carried out at 4K in MIT for both the base metal and welds of JK2LB. The test materials provided by JAREI were subjected to various cold work and aging before testing. It is found that the cold work has significant impact on the properties. Large variation of the tensile properties is observed. It includes a few specimens with brittle-like behavior. The fracture toughness of JK2LB is greatly reduced after cold work. High notch sensitivity at 4K is observed for side-grooved CT specimens. The current results indicate a need for more tests and studies
    corecore