475 research outputs found
Propranolol resolution using enantioselective biphasic systems
The commercialization of chiral drugs is an increasing concern in the pharmacological field
since the differences in the pharmacological activities of enantiomers may result in serious
problems in the treatment of diseases using racemates. The resolution of chiral drugs is
important for the development of safer and more active pharmaceuticals. This work aims to
develop an enantioseparation platform for the resolution of propranolol (R/S-PRP) resorting to
esters of tartaric acid and chiral ionic liquids (CILs) as chiral selectors in biphasic systems.
More specifically, the efficiency of enantioselective liquid–liquid extraction (ELLE) systems,
both aqueous and non-aqueous biphasic systems, are here studied, aiming to do a direct
comparison between these two types of systems for the resolution of R/S-PRP. Studies were
carried to evaluate the proper phase forming components of ELLE, R/S-PRP:chiral selector
ratio, the potential of CIL over esters of tartaric acid, and the most suitable alkyl chain length
for the esters of tartaric acid. It was found that the selected organic phase formers of ELLE,
1,2-dichloroethane and ethyl acetate, greatly impact the potential of the enantiorecognition of
the system. The most efficient biphasic system identified was composed of 1,2-dichloroethane-
water, and dipentyl-L-tartrate and boric acid as chiral selectors, with a enantioselectivity of
2.54. This system was further employed for the resolution of R/S-PRP in centrifugal partition
chromatography, to assess its scalability potential, being shown that it was possible to increase
the purity of R-PRP from 59% to 75%.publishe
Stokes Diagnostis of 2D MHD-simulated Solar Magnetogranulation
We study the properties of solar magnetic fields on scales less than the
spatial resolution of solar telescopes. A synthetic infrared
spectropolarimetric diagnostics based on a 2D MHD simulation of
magnetoconvection is used for this. We analyze two time sequences of snapshots
that likely represent two regions of the network fields with their immediate
surrounding on the solar surface with the unsigned magnetic flux density of 300
and 140 G. In the first region we find from probability density functions of
the magnetic field strength that the most probable field strength at logtau_5=0
is equal to 250 G. Weak fields (B < 500 G) occupy about 70% of the surface,
while stronger fields (B 1000 G) occupy only 9.7% of the surface. The magnetic
flux is -28 G and its imbalance is -0.04. In the second region, these
parameters are correspondingly equal to 150 G, 93.3 %, 0.3 %, -40 G, and -0.10.
We estimate the distribution of line-of-sight velocities on the surface of log
tau_5=-1. The mean velocity is equal to 0.4 km/s in the first simulated region.
The averaged velocity in the granules is -1.2 km/s and in the intergranules is
2.5 km/s. In the second region, the corresponding values of the mean velocities
are equal to 0, -1.8, 1.5 km/s. In addition we analyze the asymmetry of
synthetic Stokes-V profiles of the Fe I 1564.8 nm line. The mean values of the
amplitude and area asymmetry do not exceed 1%. The spatially smoothed amplitude
asymmetry is increased to 10% while the area asymmetry is only slightly varied.Comment: 24 pages, 12 figure
Solar Intranetwork Magnetic Elements: bipolar flux appearance
The current study aims to quantify characteristic features of bipolar flux
appearance of solar intranetwork (IN) magnetic elements. To attack such a
problem, we use the Narrow-band Filter Imager (NFI) magnetograms from the Solar
Optical Telescope (SOT) on board \emph{Hinode}; these data are from quiet and
an enhanced network areas. Cluster emergence of mixed polarities and IN
ephemeral regions (ERs) are the most conspicuous forms of bipolar flux
appearance within the network. Each of the clusters is characterized by a few
well-developed ERs that are partially or fully co-aligned in magnetic axis
orientation. On average, the sampled IN ERs have total maximum unsigned flux of
several 10^{17} Mx, separation of 3-4 arcsec, and a lifetime of 10-15 minutes.
The smallest IN ERs have a maximum unsigned flux of several 10^{16} Mx,
separations less than 1 arcsec, and lifetimes as short as 5 minutes. Most IN
ERs exhibit a rotation of their magnetic axis of more than 10 degrees during
flux emergence. Peculiar flux appearance, e.g., bipole shrinkage followed by
growth or the reverse, is not unusual. A few examples show repeated
shrinkage-growth or growth-shrinkage, like magnetic floats in the dynamic
photosphere. The observed bipolar behavior seems to carry rich information on
magneto-convection in the sub-photospheric layer.Comment: 26 pages, 14 figure
Entanglement Sudden Death in Band Gaps
Using the pseudomode method, we evaluate exactly time-dependent entanglement
for two independent qubits, each coupled to a non-Markovian structured
environment. Our results suggest a possible way to control entanglement sudden
death by modifying the qubit-pseudomode detuning and the spectrum of the
reservoirs. Particularly, in environments structured by a model of a
density-of-states gap which has two poles, entanglement trapping and prevention
of entanglement sudden death occur in the weak-coupling regime
Information loss in local dissipation environments
The sensitivity of entanglement to the thermal and squeezed reservoirs'
parameters is investigated regarding entanglement decay and what is called
sudden-death of entanglement, ESD, for a system of two qubit pairs. The
dynamics of information is investigated by means of the information disturbance
and exchange information. We show that for squeezed reservoir, we can keep both
of the entanglement and information survival for a long time. The sudden death
of information is seen in the case of thermal reservoir
Multiscale magnetic underdense regions on the solar surface: Granular and Mesogranular scales
The Sun is a non-equilibrium dissipative system subjected to an energy flow
which originates in its core. Convective overshooting motions create
temperature and velocity structures which show a temporal and spatial
evolution. As a result, photospheric structures are generally considered to be
the direct manifestation of convective plasma motions. The plasma flows on the
photosphere govern the motion of single magnetic elements. These elements are
arranged in typical patterns which are observed as a variety of multiscale
magnetic patterns. High resolution magnetograms of quiet solar surface revealed
the presence of magnetic underdense regions in the solar photosphere, commonly
called voids, which may be considered a signature of the underlying convective
structure. The analysis of such patterns paves the way for the investigation of
all turbulent convective scales from granular to global. In order to address
the question of magnetic structures driven by turbulent convection at granular
and mesogranular scales we used a "voids" detection method. The computed voids
distribution shows an exponential behavior at scales between 2 and 10 Mm and
the absence of features at 5-10 Mm mesogranular scales. The absence of
preferred scales of organization in the 2-10 Mm range supports the multiscale
nature of flows on the solar surface and the absence of a mesogranular
convective scale
Relationship between dynamical heterogeneities and stretched exponential relaxation
We identify the dynamical heterogeneities as an essential prerequisite for
stretched exponential relaxation in dynamically frustrated systems. This
heterogeneity takes the form of ordered domains of finite but diverging
lifetime for particles in atomic or molecular systems, or spin states in
magnetic materials. At the onset of the dynamical heterogeneity, the
distribution of time intervals spent in such domains or traps becomes stretched
exponential at long time. We rigorously show that once this is the case, the
autocorrelation function of the renewal process formed by these time intervals
is also stretched exponential at long time.Comment: 8 pages, 4 figures, submitted to PR
- …