5 research outputs found

    Disk winds of B[e] supergiants

    Get PDF
    The class of B[e] supergiants is characterized by a two-component stellar wind consisting of a normal hot star wind in the polar zone and a slow and dense disk-like wind in the equatorial region. The properties of the disk wind are discussed using satellite UV spectra of stars seen edge-on, i.e. through the equatorial disk. These observations show that the disk winds are extremely slow, 50-90 km/s, i.e. a factor of about 10 slower than expected from the spectral types. Optical emission lines provide a further means to study the disk wind. This is discussed for line profiles of forbidden lines formed in the disk.Comment: 7 pages, LaTeX, 3 ps figures, uses lamuphys.sty from Springer-Verlag, to be published in the proceedings of IAU Coll. 169 "Variable and Non-spherical Stellar Winds in Luminous Hot Stars" held in Heidelberg 199

    The starburst phenomenon from the optical/near-IR perspective

    Full text link
    The optical/near-IR stellar continuum carries unique information about the stellar population in a galaxy, its mass function and star-formation history. Star-forming regions display rich emission-line spectra from which we can derive the dust and gas distribution, map velocity fields, metallicities and young massive stars and locate shocks and stellar winds. All this information is very useful in the dissection of the starburst phenomenon. We discuss a few of the advantages and limitations of observations in the optical/near-IR region and focus on some results. Special attention is given to the role of interactions and mergers and observations of the relatively dust-free starburst dwarfs. In the future we expect new and refined diagnostic tools to provide us with more detailed information about the IMF, strength and duration of the burst and its triggering mechanisms.Comment: 6 pages, 3 figures, to appear in "Starbursts: from 30 Doradus to Lyman Break Galaxies" 2005, eds. R. de Grijs and R. M. Gonzalez Delgado (Kluwer

    Detection of CO emission 12CO J=1-0 and 12CO J=2-1 from the luminous Blue Variable Star AG Carinae: circumstellar envelope or disk?

    No full text
    We present the first detection of 12 CO J=2->1 and 12 CO J=1->0 emission from the LBV AG Carinae. AG Carinae resides in a region which is very rich in molecular gas with complex motions. We find evidence of a slow outflow of molecular gas, expanding at ~ 7 km/s. This emission appears spatially unresolved. We argue that it is spatially localised, rather than extended, and possibly associated with the immediate circumstellar region of AG Carinae. Does it originate from a circumstellar envelope, similar to carbon stars, or from a circumstellar disk? The option of the circumstellar disk is preferable because it is consistent with additional independent indications for the existence of wind asymmetries in close proximity to the central star, found from spectropolarimetry and analysis of the UV and optical line profiles, and it provides the conditions of density and shielding necessary for the survival of the CO molecules in proximity to such a hot star (Teff ~ 14000 K - 20000 K). In the assumption that the CO emission originated when AG Carinae was in an evolved state, we derive a lower limit to the mass of molecular gas of 2.8 solar masses. This is smaller, but still comparable with the mass of ionized gas present in the circumstellar environment (4.2 solar masses), with the implication that the molecular gas fraction can contribute significantly to the overall mass lost from the central star in its post main sequence evolution.Comment: 26 pages, 2 GIF Figures, 6 Postscript Figures. AJ, accepte

    T Tauri stars

    No full text
    corecore