164 research outputs found

    Switching model with two habitats and a predator involving group defence

    Full text link
    Switching model with one predator and two prey species is considered. The prey species have the ability of group defence. Therefore, the predator will be attracted towards that habitat where prey are less in number. The stability analysis is carried out for two equilibrium values. The theoretical results are compared with the numerical results for a set of values. The Hopf bifuracation analysis is done to support the stability results

    Small, Dense Quark Stars from Perturbative QCD

    Get PDF
    As a model for nonideal behavior in the equation of state of QCD at high density, we consider cold quark matter in perturbation theory. To second order in the strong coupling constant, αs\alpha_s, the results depend sensitively on the choice of the renormalization mass scale. Certain choices of this scale correspond to a strongly first order chiral transition, and generate quark stars with maximum masses and radii approximately half that of ordinary neutron stars. At the center of these stars, quarks are essentially massless.Comment: ReVTeX, 5 pages, 3 figure

    The Equation of State for Dense QCD and Quark Stars

    Get PDF
    We calculate the equation of state for degenerate quark matter to leading order in hard-dense-loop (HDL) perturbation theory. We solve the Tolman-Oppenheimer-Volkov equations to obtain the mass-radius relation for dense quark stars. Both the perturbative QCD and the HDL equations of state have a large variation with respect to the renormalization scale for quark chemical potential below 1 GeV which leads to large theoretical uncertainties in the quark star mass-radius relation.Comment: 7 pages, 3 figure

    Approximately self-consistent resummations for the thermodynamics of the quark-gluon plasma. I. Entropy and density

    Get PDF
    We propose a gauge-invariant and manifestly UV finite resummation of the physics of hard thermal/dense loops (HTL/HDL) in the thermodynamics of the quark-gluon plasma. The starting point is a simple, effectively one-loop expression for the entropy or the quark density which is derived from the fully self-consistent two-loop skeleton approximation to the free energy, but subject to further approximations, whose quality is tested in a scalar toy model. In contrast to the direct HTL/HDL-resummation of the one-loop free energy, in our approach both the leading-order (LO) and the next-to-leading order (NLO) effects of interactions are correctly reproduced and arise from kinematical regimes where the HTL/HDL are justifiable approximations. The LO effects are entirely due to the (asymptotic) thermal masses of the hard particles. The NLO ones receive contributions both from soft excitations, as described by the HTL/HDL propagators, and from corrections to the dispersion relation of the hard excitations, as given by HTL/HDL perturbation theory. The numerical evaluations of our final expressions show very good agreement with lattice data for zero-density QCD, for temperatures above twice the transition temperature.Comment: 62 pages REVTEX, 14 figures; v2: numerous clarifications, sect. 2C shortened, new material in sect. 3C; v3: more clarifications, one appendix removed, alternative implementation of the NLO effects, corrected eq. (5.16

    Precision Measurement of PArity Violation in Polarized Cold Neutron Capture on the Proton: the NPDGamma Experiment

    Full text link
    The NPDGamma experiment at the Los Alamos Neutron Science Center (LANSCE) is dedicated to measure with high precision the parity violating asymmetry in the γ\gamma emission after capture of spin polarized cold neutrons in para-hydrogen. The measurement will determine unambiguously the weak pion-nucleon-nucleon (πNN\pi NN) coupling constant {\it fπ1^1_{\pi}}Comment: Proceedings of the PANIC'05 Conference, Santa Fe, NM, USA, October 24-28, 2005, 3 pages, 2 figure

    Quasi-Particle Description of Strongly Interacting Matter: Towards a Foundation

    Get PDF
    We confront our quasi-particle model for the equation of state of strongly interacting matter with recent first-principle QCD calculations. In particular, we test its applicability at finite baryon densities by comparing with Taylor expansion coefficients of the pressure for two quark flavours. We outline a chain of approximations starting from the Phi-functional approach to QCD which motivates the quasi-particle picture.Comment: Aug 2006. 6 pp. Invited Talk given at Hot Quarks 2006, Villasimius, Sardinia, Italy, 15-20 May 200

    A Massive Renormalizable Abelian Gauge Theory in 2+1 Dimensions

    Get PDF
    The standard formulation of a massive Abelian vector field in 2+12+1 dimensions involves a Maxwell kinetic term plus a Chern-Simons mass term; in its place we consider a Chern-Simons kinetic term plus a Stuekelberg mass term. In this latter model, we still have a massive vector field, but now the interaction with a charged spinor field is renormalizable (as opposed to super renormalizable). By choosing an appropriate gauge fixing term, the Stuekelberg auxiliary scalar field decouples from the vector field. The one-loop spinor self energy is computed using operator regularization, a technique which respects the three dimensional character of the antisymmetric tensor ϵαβγ\epsilon_{\alpha\beta\gamma}. This method is used to evaluate the vector self energy to two-loop order; it is found to vanish showing that the beta function is zero to two-loop order. The canonical structure of the model is examined using the Dirac constraint formalism.Comment: LaTeX, 17 pages, expanded reference list and discussion of relationship to previous wor

    Low Energy Theory for 2 flavors at High Density QCD

    Get PDF
    We construct the effective Lagrangian describing the low energy excitations for Quantum Chromodynamics with two flavors at high density. The non-linear realization framework is employed to properly construct the low energy effective theory. The light degrees of freedom, as required by 't Hooft anomaly conditions, contain massless fermions which we properly include in the effective Lagrangian. We also provide a discussion of the linearly realized Lagrangian.Comment: 17 pages, RevTeX format, references added. To appear in Phys. Rev.

    The Muonium Atom as a Probe of Physics beyond the Standard Model

    Get PDF
    The observed interactions between particles are not fully explained in the successful theoretical description of the standard model to date. Due to the close confinement of the bound state muonium (M=μ+eM = \mu^+ e^-) can be used as an ideal probe of quantum electrodynamics and weak interaction and also for a search for additional interactions between leptons. Of special interest is the lepton number violating process of sponteanous conversion of muonium to antimuonium.Comment: 15 pages,6 figure
    corecore