68 research outputs found

    Universal scaling of the magnetic anisotropy in two-dimensional rare-earth layers

    Get PDF
    Unraveling the influence that low dimensionality has upon the spin's stability in two-dimensional (2D) systems is instrumental for the efficient engineering of energy barriers in ultrathin magnetic layers. Taking rare-earth-based ultrathin multilayered nanostructures as a model system, we have investigated the dissimilar impact that low dimensionality and finite-size effects have upon the magnetic anisotropy energy (MAE) at the nanoscale. We conclusively show that the reduced dimensionality of the spin's system in 2D ferromagnetic layers imprints on the MAE constants a universal temperature decay as a quadratic power law of the reduced magnetization. This result is in agreement with predictions, although in marked contrast to the rank-dependent, thereby faster, decay of the MAE constants observed in three-dimensional nanostructures

    Magnetoelastic stresses in rare-earth thin films and superlattices

    No full text
    We report on the study of the magnetoelastic behavior of some rare-earth based thin films and superlattices (SL`s). Magnetoelastic stress (MS) measurements (by using a cantilever capacitive technique) within a wide range of temperatures (10-300 K) and magnetic fields (up to 12 T) have been performed. We derive expressions relating the cantilever curvatures and the magnetoelastic stresses in anisotropic thin films and SL`s (for cubic symmetry) deposited onto crystalline substrates. The magnetoelastic energy associated to the interfaces and the epitaxial stress dependence of the volume MS has been investigated by studying the basal plane MS in Hon/Lu₁₅ and in Ho₁₀/Ym SL`s: we obtain interface MS even higher than the volume ones and the effect in bulk`s MS of the epitaxial strain is large. In Dy/Y and Er/Lu SL's we also deduce the MS contributions but, for Er/Lu, incomplete saturation leads to inconclusive results. Although the latter case also happens in Ho/Tm SL`s, MS clearly shows anisotropy competition. In TbFe₂ (t) / YFe₂(1000 Å) (300 Å < t < 1300 Å) epitaxial bilayers, we determine all the MS allowed by the symmetry and show that epitaxial stress strongly modifies the tetragonal MS. The thermal dependence of MS parameters is also analysed

    Exchange-spring driven spin-flop transition in DyFe2/YFe2 superlattices

    No full text
    Exchange-spring driven spin-flop transition is observed in hysteresis loops of an antiferromagnetic [DyFe2 40 Å/YFe2 160 Å]×20 superlattice at temperatures higher than 100 K, with field along the in-plane easy axis [View the MathML source1¯10]. OOMMF micromagnetic simulation reveals that this transition is derived from the magneto-elastic interaction in DyFe2. Conventional exchange spring behavior is also observable at smaller fields. Simulation shows that it is caused by the simultaneous rotation of the magnetization vectors of both the hard and soft layers towards [010]. Experiment and simulation agree qualitatively with each other
    corecore