51 research outputs found

    Loop operators and S-duality from curves on Riemann surfaces

    Full text link
    We study Wilson-'t Hooft loop operators in a class of N=2 superconformal field theories recently introduced by Gaiotto. In the case that the gauge group is a product of SU(2) groups, we classify all possible loop operators in terms of their electric and magnetic charges subject to the Dirac quantization condition. We then show that this precisely matches Dehn's classification of homotopy classes of non-self-intersecting curves on an associated Riemann surface--the same surface which characterizes the gauge theory. Our analysis provides an explicit prediction for the action of S-duality on loop operators in these theories which we check against the known duality transformation in several examples.Comment: 41 page

    Computing topological invariants with one and two-matrix models

    Get PDF
    A generalization of the Kontsevich Airy-model allows one to compute the intersection numbers of the moduli space of p-spin curves. These models are deduced from averages of characteristic polynomials over Gaussian ensembles of random matrices in an external matrix source. After use of a duality, and of an appropriate tuning of the source, we obtain in a double scaling limit these intersection numbers as polynomials in p. One can then take the limit p to -1 which yields a matrix model for orbifold Euler characteristics. The generalization to a time-dependent matrix model, which is equivalent to a two-matrix model, may be treated along the same lines ; it also yields a logarithmic potential with additional vertices for general p.Comment: 30 pages, added references, changed conten

    Glassy Random Matrix Models

    Full text link
    This paper discusses Random Matrix Models which exhibit the unusual phenomena of having multiple solutions at the same point in phase space. These matrix models have gaps in their spectrum or density of eigenvalues. The free energy and certain correlation functions of these models show differences for the different solutions. Here I present evidence for the presence of multiple solutions both analytically and numerically. As an example I discuss the double well matrix model with potential V(M)=μ2M2+g4M4V(M)= -{\mu \over 2}M^2+{g \over 4}M^4 where MM is a random N×NN\times N matrix (the M4M^4 matrix model) as well as the Gaussian Penner model with V(M)=μ2M2tlnMV(M)={\mu\over 2}M^2-t \ln M. First I study what these multiple solutions are in the large NN limit using the recurrence coefficient of the orthogonal polynomials. Second I discuss these solutions at the non-perturbative level to bring out some differences between the multiple solutions. I also present the two-point density-density correlation functions which further characterizes these models in a new university class. A motivation for this work is that variants of these models have been conjectured to be models of certain structural glasses in the high temperature phase.Comment: 25 pages, Latex, 7 Figures, to appear in PR

    Extension of geodesic algebras to continuous genus

    Get PDF
    Using the Penner--Fock parameterization for Teichmuller spaces of Riemann surfaces with holes, we construct the string-like free-field representation of the Poisson and quantum algebras of geodesic functions in the continuous-genus limit. The mapping class group acts naturally in the obtained representation.Comment: 16 pages, submitted to Lett.Math.Phy

    Classes on compactifications of the moduli space of curves through solutions to the quantum master equation

    Full text link
    In this paper we describe a construction which produces classes in a compactification of the moduli space of curves. This construction extends a construction of Kontsevich which produces classes in the open moduli space from the initial data of a cyclic A-infinity algebra. The initial data for our construction is what we call a `quantum A-infinity algebra', which arises as a type of deformation of a cyclic A-infinity algebra. The deformation theory for these structures is described explicitly. We construct a family of examples of quantum A-infinity algebras which extend a family of cyclic A-infinity algebras, introduced by Kontsevich, which are known to produce all the Miller-Morita-Mumford classes using his construction.Comment: This version includes an updated list of reference

    Intersection numbers of Riemann surfaces from Gaussian matrix models

    Full text link
    We consider a Gaussian random matrix theory in the presence of an external matrix source. This matrix model, after duality (a simple version of the closed/open string duality), yields a generalized Kontsevich model through an appropriate tuning of the external source. The n-point correlation functions of this theory are shown to provide the intersection numbers of the moduli space of curves with a p-spin structure, n marked points and top Chern class. This sheds some light on Witten's conjecture on the relationship with the pth-KdV equation

    Exact beta function from the holographic loop equation of large-N QCD_4

    Full text link
    We construct and study a previously defined quantum holographic effective action whose critical equation implies the holographic loop equation of large-N QCD_4 for planar self-avoiding loops in a certain regularization scheme. We extract from the effective action the exact beta function in the given scheme. For the Wilsonean coupling constant the beta function is exacly one loop and the first coefficient agrees with its value in perturbation theory. For the canonical coupling constant the exact beta function has a NSVZ form and the first two coefficients agree with their value in perturbation theory.Comment: 42 pages, latex. The exponent of the Vandermonde determinant in the quantum effective action has been changed, because it has been employed a holomorphic rather than a hermitean resolution of identity in the functional integral. Beta function unchanged. New explanations and references added, typos correcte

    An infinite genus mapping class group and stable cohomology

    Full text link
    We exhibit a finitely generated group \M whose rational homology is isomorphic to the rational stable homology of the mapping class group. It is defined as a mapping class group associated to a surface \su of infinite genus, and contains all the pure mapping class groups of compact surfaces of genus gg with nn boundary components, for any g0g\geq 0 and n>0n>0. We construct a representation of \M into the restricted symplectic group Spres(Hr){\rm Sp_{res}}({\cal H}_r) of the real Hilbert space generated by the homology classes of non-separating circles on \su, which generalizes the classical symplectic representation of the mapping class groups. Moreover, we show that the first universal Chern class in H^2(\M,\Z) is the pull-back of the Pressley-Segal class on the restricted linear group GLres(H){\rm GL_{res}}({\cal H}) via the inclusion Spres(Hr)GLres(H){\rm Sp_{res}}({\cal H}_r)\subset {\rm GL_{res}}({\cal H}).Comment: 14p., 8 figures, to appear in Commun.Math.Phy

    Generalized Penner models to all genera

    Full text link
    We give a complete description of the genus expansion of the one-cut solution to the generalized Penner model. The solution is presented in a form which allows us in a very straightforward manner to localize critical points and to investigate the scaling behaviour of the model in the vicinity of these points. We carry out an analysis of the critical behaviour to all genera addressing all types of multi-critical points. In certain regions of the coupling constant space the model must be defined via analytical continuation. We show in detail how this works for the Penner model. Using analytical continuation it is possible to reach the fermionic 1-matrix model. We show that the critical points of the fermionic 1-matrix model can be indexed by an integer, mm, as it was the case for the ordinary hermitian 1-matrix model. Furthermore the mm'th multi-critical fermionic model has to all genera the same value of γstr\gamma_{str} as the mm'th multi-critical hermitian model. However, the coefficients of the topological expansion need not be the same in the two cases. We show explicitly how it is possible with a fermionic matrix model to reach a m=2m=2 multi-critical point for which the topological expansion has alternating signs, but otherwise coincides with the usual Painlev\'{e} expansion.Comment: 27 pages, PostScrip

    Fuchsian convex bodies: basics of Brunn--Minkowski theory

    Full text link
    The hyperbolic space \H^d can be defined as a pseudo-sphere in the (d+1)(d+1) Minkowski space-time. In this paper, a Fuchsian group Γ\Gamma is a group of linear isometries of the Minkowski space such that \H^d/\Gamma is a compact manifold. We introduce Fuchsian convex bodies, which are closed convex sets in Minkowski space, globally invariant for the action of a Fuchsian group. A volume can be associated to each Fuchsian convex body, and, if the group is fixed, Minkowski addition behaves well. Then Fuchsian convex bodies can be studied in the same manner as convex bodies of Euclidean space in the classical Brunn--Minkowski theory. For example, support functions can be defined, as functions on a compact hyperbolic manifold instead of the sphere. The main result is the convexity of the associated volume (it is log concave in the classical setting). This implies analogs of Alexandrov--Fenchel and Brunn--Minkowski inequalities. Here the inequalities are reversed
    corecore