68 research outputs found
Gravitation with superposed Gauss--Bonnet terms in higher dimensions: Black hole metrics and maximal extensions
Our starting point is an iterative construction suited to combinatorics in
arbitarary dimensions d, of totally anisymmetrised p-Riemann 2p-forms (2p\le d)
generalising the (1-)Riemann curvature 2-forms. Superposition of p-Ricci
scalars obtained from the p-Riemann forms defines the maximally Gauss--Bonnet
extended gravitational Lagrangian. Metrics, spherically symmetric in the (d-1)
space dimensions are constructed for the general case. The problem is directly
reduced to solving polynomial equations. For some black hole type metrics the
horizons are obtained by solving polynomial equations. Corresponding Kruskal
type maximal extensions are obtained explicitly in complete generality, as is
also the periodicity of time for Euclidean signature. We show how to include a
cosmological constant and a point charge. Possible further developments and
applications are indicated.Comment: 13 pages, REVTEX. References and Note Adde
Three-Body approach to the K^- d Scattering Length in Particle Basis
We report on the first calculation of the scattering length A_{K^-d} based on
a relativistic three-body approach where the two-body input amplitudes coupled
to the Kbar N channels have been obtained with the chiral SU(3) constraint, but
with isospin symmetry breaking effects taken into account. Results are compared
with a recent calculation applying a similar set of two-body amplitudes,based
on the fixed center approximation, considered as a good approximation for a
loosely bound target, and for which we find significant deviations from the
exact three-body results. Effects of the hyperon-nucleon interaction, and
deuteron -wave component are also evaluated.Comment: 5 pages, Submitted to Phys. Rev.
A Charged Rotating Black Ring
We construct a supergravity solution describing a charged rotating black ring
with S^2xS^1 horizon in a five dimensional asymptotically flat spacetime. In
the neutral limit the solution is the rotating black ring recently found by
Emparan and Reall. We determine the exact value of the lower bound on J^2/M^3,
where J is the angular momentum and M the mass; the black ring saturating this
bound has maximum entropy for the given mass. The charged black ring is
characterized by mass M, angular momentum J, and electric charge Q, and it also
carries local fundamental string charge. The electric charge distributed
uniformly along the ring helps support the ring against its gravitational
self-attraction, so that J^2/M^3 can be made arbitrarily small while Q/M
remains finite. The charged black ring has an extremal limit in which the
horizon coincides with the singularity.Comment: 25 pages, 1 figur
On the thin-shell limit of branes in the presence of Gauss-Bonnet interactions
In this paper we study thick-shell braneworld models in the presence of a
Gauss-Bonnet term. We discuss the peculiarities of the attainment of the
thin-shell limit in this case and compare them with the same situation in
Einstein gravity. We describe the two simplest families of thick-brane models
(parametrized by the shell thickness) one can think of. In the thin-shell
limit, one family is characterized by the constancy of its internal density
profile (a simple structure for the matter sector) and the other by the
constancy of its internal curvature scalar (a simple structure for the
geometric sector). We find that these two families are actually equivalent in
Einstein gravity and that the presence of the Gauss-Bonnet term breaks this
equivalence. In the second case, a shell will always keep some non-trivial
internal structure, either on the matter or on the geometric sectors, even in
the thin-shell limit.Comment: 17 pages, 2 figures, RevTeX 4. Revised version accepted for
publication in Physical Review
Generalised Israel Junction Conditions for a Gauss-Bonnet Brane World
In spacetimes of dimension greater than four it is natural to consider higher
order (in R) corrections to the Einstein equations. In this letter generalized
Israel junction conditions for a membrane in such a theory are derived. This is
achieved by generalising the Gibbons-Hawking boundary term. The junction
conditions are applied to simple brane world models, and are compared to the
many contradictory results in the literature.Comment: 4 page
A Naturally Small Cosmological Constant on the Brane?
There appears to be no natural explanation for the cosmological constant's
small size within the framework of local relativistic field theories. We argue
that the recently-discussed framework for which the observable universe is
identified with a p-brane embedded within a higher-dimensional `bulk'
spacetime, has special properties that may help circumvent the obstacles to
this understanding. This possibility arises partly due to several unique
features of the brane proposal. These are: (1) the potential such models
introduce for partially breaking supersymmetry, (2) the possibility of having
low-energy degrees of freedom which are not observable to us because they are
physically located on a different brane, (3) the fundamental scale may be much
smaller than the Planck scale. Furthermore, although the resulting cosmological
constant in the scenarios we outline is naturally suppressed by weak coupling
constants of gravitational strength, it need not be exactly zero, raising the
possibility it could be in the range favoured by recent cosmological
observations.Comment: 7 pages. Powercounting arguments clarified, and comparison between
the induced cosmological constant and supersymmetric mass splittings made
more explici
Brane cosmology with curvature corrections
We study the cosmology of the Randall-Sundrum brane-world where the
Einstein-Hilbert action is modified by curvature correction terms: a
four-dimensional scalar curvature from induced gravity on the brane, and a
five-dimensional Gauss-Bonnet curvature term. The combined effect of these
curvature corrections to the action removes the infinite-density big bang
singularity, although the curvature can still diverge for some parameter
values. A radiation brane undergoes accelerated expansion near the minimal
scale factor, for a range of parameters. This acceleration is driven by the
geometric effects, without an inflaton field or negative pressures. At late
times, conventional cosmology is recovered.Comment: RevTex4, 8 pages, no figures, minor change
Singularities In Scalar-Tensor Cosmologies
In this article, we examine the possibility that there exist special
scalar-tensor theories of gravity with completely nonsingular FRW solutions.
Our investigation in fact shows that while most probes living in such a
Universe never see the singularity, gravity waves always do. This is because
they couple to both the metric and the scalar field, in a way which effectively
forces them to move along null geodesics of the Einstein conformal frame. Since
the metric of the Einstein conformal frame is always singular for
configurations where matter satisfies the energy conditions, the gravity wave
world lines are past inextendable beyond the Einstein frame singularity, and
hence the geometry is still incomplete, and thus singular. We conclude that the
singularity cannot be entirely removed, but only be made invisible to most, but
not all, probes in the theory.Comment: 23 pages, latex, no figure
Effective Lagrangian Approach to the Theory of Eta Photoproduction in the Region
We investigate eta photoproduction in the resonance region
within the effective Lagrangian approach (ELA), wherein leading contributions
to the amplitude at the tree level are taken into account. These include the
nucleon Born terms and the leading -channel vector meson exchanges as the
non-resonant pieces. In addition, we consider five resonance contributions in
the - and - channel; besides the dominant , these are:
and . The amplitudes for the
and the photoproduction near threshold have significant
differences, even as they share common contributions, such as those of the
nucleon Born terms. Among these differences, the contribution to the
photoproduction of the -channel excitation of the is the most
significant. We find the off-shell properties of the spin-3/2 resonances to be
important in determining the background contributions. Fitting our effective
amplitude to the available data base allows us to extract the quantity
, characteristic of the
photoexcitation of the resonance and its decay into the
-nucleon channel, of interest to precise tests of hadron models. At the
photon point, we determine it to be from
the old data base, and from a
combination of old data base and new Bates data. We obtain the helicity
amplitude for to be from the old data base, and from the combination of the old data base and new Bates
data, compared with the results of the analysis of pion photoproduction
yielding , in the same units.Comment: 43 pages, RevTeX, 9 figures available upon request, to appear in
Phys. Rev.
- âŠ