120 research outputs found

    ESA ice sheet CCI: derivation of the optimal method for surface elevation change detection of the Greenland ice sheet - round robin results

    Get PDF
    For more than two decades, radar altimetry missions have provided continuous elevation estimates of the Greenland ice sheet (GrIS). Here, we propose a method for using such data to estimate ice-sheet-wide surface elevation changes (SECs). The final data set will be based on observations acquired from the European Space Agency’s Environmental Satellite (ENVISAT), European Remote Sensing (ERS)-1 and -2, CryoSat-2, and, in the longer term, Sentinel-3 satellites. In order to find the best-performing method, an intercomparison exercise has been carried out in which the scientific community was asked to provide their best SEC estimates as well as feedback sheets describing the applied method. Due to the hitherto few radar-based SEC analyses as well as the higher accuracy of laser data, the participants were asked to use either ENVISAT radar or ICESat (Ice, Cloud, and land Elevation Satellite) laser altimetry over the Jakobshavn Isbræ drainage basin. The submissions were validated against airborne laser-scanner data, and intercomparisons were carried out to analyse the potential of the applied methods and to find whether the two altimeters were capable of resolving the same signal. The analyses found great potential of the applied repeat-track and cross-over techniques, and, for the first time over Greenland, that repeat-track analyses from radar altimetry agreed well with laser data. Since topography-related errors can be neglected in cross-over analyses, it is expected that the most accurate, ice-sheet-wide SEC estimates are obtained by combining the cross-over and repeat-track techniques. It is thus possible to exploit the high accuracy of the former and the large spatial data coverage of the latter. Based on CryoSat’s different operation modes, and the increased spatial and temporal data coverage, this shows good potential for a future inclusion of CryoSat-2 and Sentinel-3 data to continuously obtain accurate SEC estimates both in the interior and margin ice sheet

    Trends in detecting changes from repeated laser scanning data

    No full text
    Change detection is an important application of laser scanning data. It is also a challenging application as errors that are inevitably present when determining the geometric state of a scene of interest in a certain epoch will somehow add up when comparing the geometric state between epochs. As a consequence it is often difficult to distinguish real changes from differences caused by measurement and/or processing errors. On top of that, data volumes are rapidly increasing. Therefore successful change detection methods should not only be robust against errors but also computational efficient. In this paper a not necessarily complete overview of recent methodology is given that is presented in connection with the applications considered by the original authors.Geoscience and Remote ControlCivil Engineering and Geoscience

    An improved coherent point drift method for tls point cloud registration of complex scenes

    No full text
    Processing unorganized 3D point clouds is highly desirable, especially for the applications in complex scenes (such as: mountainous or vegetation areas). Registration is the precondition to obtain complete surface information of complex scenes. However, for complex environment, the automatic registration of TLS point clouds is still a challenging problem. In this research, we propose an automatic registration for TLS point clouds of complex scenes based on coherent point drift (CPD) algorithm combined with a robust covariance descriptor. Out method consists of three steps: the construction of the covariance descriptor, uniform sampling of point clouds, and CPD optimization procedures based on Expectation-Maximization (EM algorithm). In the first step, we calculate a feature vector to construct a covariance matrix for each point based on the estimated normal vectors. In the subsequent step, to ensure efficiency, we use uniform sampling to obtain a small point set from the original TLS data. Finally, we form an objective function combining the geometric information described by the proposed descriptor, and optimize the transformation iteratively by maximizing the likelihood function. The experimental results on the TLS datasets of various scenes demonstrate the reliability and efficiency of the proposed method. Especially for complex environments with disordered vegetation or point density variations, this method can be much more efficient than original CPD algorithm

    Extracting Bridge Components from a Laser Scanning Point Cloud

    No full text
    A three-dimensional (3D) geometric model of a bridge plays an important role in inspection, assessment and management of the bridge. As most bridges were built after the second world war, 3D bridge models are rarely available. A recent development in laser scanning offers a cost-efficient method to capture dense, accurate 3D topographic data of the bridge. However, given the typical complexity of the bridge, a current workflow based commercial software to construct the bridge model still requires intensive labour work. This paper introduces a new approach to extract the point cloud of each surface of structural components of a slab/box beam bridge automatically in a sequential order from a superstructure to a substructure. The proposed method first employs a quadtree to decompose the point cloud of the bridge into two dimensional (2D) cells. Second, a kernel density estimation is used to separate a point cloud describing patches of surfaces within the cells. Subsequently, the cell- and voxel-based region growing are developed to segment patches within the cells/voxels for the superstructure and substructure, respectively. Moreover, knowledge of the bridge’s components (e.g. position, orientation, or shape) is introduced to allow the proposed method to identify criteria for filtering irrelevant objects, and to establish criteria for extracting the components. An experimental test shows the proposed method successfully extracts all surfaces of the bridge components.</p

    Accuracy assessment of building point clouds automatically generated from iphone images

    No full text
    Low-cost sensor generated 3D models can be useful for quick 3D urban model updating, yet the quality of the models is questionable. In this article, we evaluate the reliability of an automatic point cloud generation method using multi-view iPhone images or an iPhone video file as an input. We register such automatically generated point cloud on a TLS point cloud of the same object to discuss accuracy, advantages and limitations of the iPhone generated point clouds. For the chosen example showcase, we have classified 1.23% of the iPhone point cloud points as outliers, and calculated the mean of the point to point distances to the TLS point cloud as 0.11m. Since a TLS point cloud might also include measurement errors and noise, we computed local noise values for the point clouds from both sources. Mean (μ) and standard deviation (σ) of roughness histograms are calculated as (μ1 = 0.44m., σ1 = 0.071m.) and (μ2 = 0.025m., σ2 = 0.037m.) for the iPhone and TLS point clouds respectively. Our experimental results indicate possible usage of the proposed automatic 3D model generation framework for 3D urban map updating, fusion and detail enhancing, quick and real-time change detection purposes. However, further insights should be obtained first on the circumstances that are needed to guarantee a successful point cloud generation from smartphone images.Optical and Laser Remote Sensin

    Automatic classification of trees from laser scanning point clouds

    No full text
    Development of laser scanning technologies has promoted tree monitoring studies to a new level, as the laser scanning point clouds enable accurate 3D measurements in a fast and environmental friendly manner. In this paper, we introduce a probability matrix computation based algorithm for automatically classifying laser scanning point clouds into ’tree’ and ’non-tree’ classes. Our method uses the 3D coordinates of the laser scanning points as input and generates a new point cloud which holds a label for each point indicating if it belongs to the ’tree’ or ’non-tree’ class. To do so, a grid surface is assigned to the lowest height level of the point cloud. The grids are filled with probability values which are calculated by checking the point density above the grid. Since the tree trunk locations appear with very high values in the probability matrix, selecting the local maxima of the grid surface help to detect the tree trunks. Further points are assigned to tree trunks if they appear in the close proximity of trunks. Since heavy mathematical computations (such as point cloud organization, detailed shape 3D detection methods, graph network generation) are not required, the proposed algorithm works very fast compared to the existing methods. The tree classification results are found reliable even on point clouds of cities containing many different objects. As the most significant weakness, false detection of light poles, traffic signs and other objects close to trees cannot be prevented. Nevertheless, the experimental results on mobile and airborne laser scanning point clouds indicate the possible usage of the algorithm as an important step for tree growth observation, tree counting and similar applications. While the laser scanning point cloud is giving opportunity to classify even very small trees, accuracy of the results is reduced in the low point density areas further away than the scanning location. These advantages and disadvantages of two laser scanning point cloud sources are discussed in detail.Geoscience & Remote SensingCivil Engineering and Geoscience

    An improved coherent point drift method for tls point cloud registration of complex scenes

    No full text
    Processing unorganized 3D point clouds is highly desirable, especially for the applications in complex scenes (such as: mountainous or vegetation areas). Registration is the precondition to obtain complete surface information of complex scenes. However, for complex environment, the automatic registration of TLS point clouds is still a challenging problem. In this research, we propose an automatic registration for TLS point clouds of complex scenes based on coherent point drift (CPD) algorithm combined with a robust covariance descriptor. Out method consists of three steps: the construction of the covariance descriptor, uniform sampling of point clouds, and CPD optimization procedures based on Expectation-Maximization (EM algorithm). In the first step, we calculate a feature vector to construct a covariance matrix for each point based on the estimated normal vectors. In the subsequent step, to ensure efficiency, we use uniform sampling to obtain a small point set from the original TLS data. Finally, we form an objective function combining the geometric information described by the proposed descriptor, and optimize the transformation iteratively by maximizing the likelihood function. The experimental results on the TLS datasets of various scenes demonstrate the reliability and efficiency of the proposed method. Especially for complex environments with disordered vegetation or point density variations, this method can be much more efficient than original CPD algorithm.Optical and Laser Remote Sensin

    Active Shapes for Automatic 3D Modeling of Buildings

    No full text
    Recent technological developments help us to acquire high quality 3D measurements of our urban environment. However, these measurements, which come as point clouds or Digital Surface Models (DSM), do not directly give 3D geometrical models of buildings. In addition to that, they are not suitable for fast 3D rendering. Therefore, detection and 3D reconstruction of buildings is an important research topic. We introduce a new active shape fitting algorithm for generating building models. Two significant improvements of the introduced method compared to our previous active shape algorithm are: (1) here, active shapes are initialized as cubes; and (2) the new energy function is computed by measuring the distances of the vertical cube faces to the building facade points and also by measuring the mean distance between the rooftop points and the top face of the cube. The proposed method helps to obtain 3D building models automatically even when the facade borders are difficult to detect because of neighboring trees or other objects. For testing the proposed approach, we use Airborne Laser Scanning (ALS) data of an area in Delft, The Netherlands. We compare the proposed 3D active shape fitting method with a previously developed 2D method. The results show the possible usage of the algorithm when simple and easy-to-render 3D models of large cities are needed.Geoscience & Remote SensingCivil Engineering and Geoscience
    • …
    corecore