711 research outputs found

    Isolation of a photosystem 2 preparation from higher plants with highly enriched oxygen evolution activity

    Get PDF
    AbstractDetergent-treatment of higher plant thylakoids with Triton X-100 at pH 6.3 has been used to purify a PS2 fraction with very high rates of oxygen evolution (1000 ÎŒmol.mg chl−1.h−1). A photosynthetic unit size of about 300 chlorophyll (chl) molecules has been determined by optical methods, suggesting an average turnover time for PS2 of about 2 ms. The donor system for P680+ is particularly well preserved in the preparation, as judged by P680+ reduction kinetics, the detection by EPR of Signal IILT and the presence of the high potential form of cytochrome b-559 (at a ratio of 1:1 with the reaction centre)

    Is group psychotherapy feasible for oncology outpatients attenders selected on the basis of psychological morbidity?

    Get PDF
    Of 120 consecutive attenders at an oncology outpatients department, 108 were screened for psychological symptoms using the Hospital Anxiety and Depression Scale (Zigmond & Snaith, 1983). Thirty-nine patients had significant scores indicating moderate anxiety and/or depression. We felt that this warranted an offer of group psychotherapy in the belief that sharing issues and exploring personal concerns may alleviate some of the experienced psychological distress. Only 10 patients consented to and were able to attend this group, with which five patients persisted. Thus in this group of patients with advanced cancer group psychotherapy was applicable only to a limited number of selected patients. The nature of this study and the size of the population markedly limited our ability to comment on the usefulness of group psychotherapy. Many patients, particularly the most severely psychologically distressed, continued to require other forms of support, particularly domiciliary individual therapy

    Rapid electron transfer reactions associated with oxygen evolution in photosystem II preparations from spinach and Phormidium laminosum

    Get PDF
    AbstractWe have measured the nanosecond kinetics of Chl-a+II reduction in oxygen-evolving detergent preparations of PS II from the cyanobacterium Phormidium laminosum and from higher plants (spinach) at 824 and 680 nm. Compared to earlier studies at 680 nm with higher plant material, we obtained an improved signal: noise ratio for measurements on a ns to ms time scale. The kinetics of Chl-a+II reduction in the ns range are consistent in the two preparations and are comparable to other studies of higher plant and cyanobacterial material. The ns kinetics are tightly connected to the ability for O2 evolution. Analysis of the ÎŒs kinetics indicates three phases: (a) the slow phase (t12 ~ 150 ÎŒs in spinach and ~ 500 ÎŒs in Phormidium) reflects the back reaction between Chl-a+II and Q−; (b) the phase with t125–10 ÎŒs is probably due to a donor which is not connected to an intact water oxidation system; (c) the intermediate ÎŒs component (t12 30–40 ÎŒs) may be related to water oxidation

    Breakdown of the Landauer bound for information erasure in the quantum regime

    Full text link
    A known aspect of the Clausius inequality is that an equilibrium system subjected to a squeezing \d S of its entropy must release at least an amount |\dbarrm Q|=T|\d S| of heat. This serves as a basis for the Landauer principle, which puts a lower bound Tln⁥2T\ln 2 for the heat generated by erasure of one bit of information. Here we show that in the world of quantum entanglement this law is broken. A quantum Brownian particle interacting with its thermal bath can either generate less heat or even {\it adsorb} heat during an analogous squeezing process, due to entanglement with the bath. The effect exists even for weak but fixed coupling with the bath, provided that temperature is low enough. This invalidates the Landauer bound in the quantum regime, and suggests that quantum carriers of information can be much more efficient than assumed so far.Comment: 13 pages, revtex, 2 eps figure

    Naked Singularity Explosion

    Full text link
    It is known that the gravitational collapse of a dust ball results in naked singularity formation from an initial density profile which is physically reasonable. In this paper, we show that explosive radiation is emitted during the formation process of the naked singularity.Comment: 6 pages, 3 figures, Accepted for Publication in Phys. Rev. D as a Rapid Communicatio

    Resonant transmission through an open quantum dot

    Full text link
    We have measured the low-temperature transport properties of a quantum dot formed in a one-dimensional channel. In zero magnetic field this device shows quantized ballistic conductance plateaus with resonant tunneling peaks in each transition region between plateaus. Studies of this structure as a function of applied perpendicular magnetic field and source-drain bias indicate that resonant structure deriving from tightly bound states is split by Coulomb charging at zero magnetic field.Comment: To be published in Phys. Rev. B (1997). 8 LaTex pages with 5 figure

    The distribution of transit durations for Kepler planet candidates and implications for their orbital eccentricities

    Get PDF
    ‘In these times, during the rise in the popularity of institutional repositories, the Society does not forbid authors from depositing their work in such repositories. However, the AAS regards the deposit of scholarly work in such repositories to be a decision of the individual scholar, as long as the individual's actions respect the diligence of the journals and their reviewers.’ Original article can be found at : http://iopscience.iop.org/ Copyright American Astronomical SocietyDoppler planet searches have discovered that giant planets follow orbits with a wide range of orbital eccentricities, revolutionizing theories of planet formation. The discovery of hundreds of exoplanet candidates by NASA's Kepler mission enables astronomers to characterize the eccentricity distribution of small exoplanets. Measuring the eccentricity of individual planets is only practical in favorable cases that are amenable to complementary techniques (e.g., radial velocities, transit timing variations, occultation photometry). Yet even in the absence of individual eccentricities, it is possible to study the distribution of eccentricities based on the distribution of transit durations (relative to the maximum transit duration for a circular orbit). We analyze the transit duration distribution of Kepler planet candidates. We find that for host stars with T > 5100 K we cannot invert this to infer the eccentricity distribution at this time due to uncertainties and possible systematics in the host star densities. With this limitation in mind, we compare the observed transit duration distribution with models to rule out extreme distributions. If we assume a Rayleigh eccentricity distribution for Kepler planet candidates, then we find best fits with a mean eccentricity of 0.1-0.25 for host stars with T ≀ 5100 K. We compare the transit duration distribution for different subsets of Kepler planet candidates and discuss tentative trends with planetary radius and multiplicity. High-precision spectroscopic follow-up observations for a large sample of host stars will be required to confirm which trends are real and which are the results of systematic errors in stellar radii. Finally, we identify planet candidates that must be eccentric or have a significantly underestimated stellar radius.Peer reviewedFinal Accepted Versio

    Monopole characteristics in various Abelian gauges

    Get PDF
    Renormalization group (RG) smoothing is employed on the lattice to investigate and to compare the monopole structure of the SU(2) vacuum as seen in different gauges (maximally Abelian (MAG), Polyakov loop (PG) and Laplacian gauge (LG)). Physically relevant types of monopoles (LG and MAG) are distinguished by their behavior near the deconfining phase transition. For the LG, Abelian projection reproduces well the gauge independent monopole structure encoded in an auxiliary Higgs field. Density and localization properties of monopoles, their non-Abelian action and topological charge are studied. Results are presented confirming the Abelian dominance with respect to the non-perturbative static potential for all gauges considered.Comment: 36 pages, 12 figure

    Semiclassical Instability of the Cauchy Horizon in Self-Similar Collapse

    Full text link
    Generic spherically symmetric self-similar collapse results in strong naked-singularity formation. In this paper we are concerned with particle creation during a naked-singularity formation in spherically symmetric self-similar collapse without specifying the collapsing matter. In the generic case, the power of particle emission is found to be proportional to the inverse square of the remaining time to the Cauchy horizon (CH). The constant of proportion can be arbitrarily large in the limit to marginally naked singularity. Therefore, the unbounded power is especially striking in the case that an event horizon is very close to the CH because the emitted energy can be arbitrarily large in spite of a cutoff expected from quantum gravity. Above results suggest the instability of the CH in spherically symmetric self-similar spacetime from quantum field theory and seem to support the existence of a semiclassical cosmic censor. The divergence of redshifts and blueshifts of emitted particles is found to cause the divergence of power to positive or negative infinity, depending on the coupling manner of scalar fields to gravity. On the other hand, it is found that there is a special class of self-similar spacetimes in which the semiclassical instability of the CH is not efficient. The analyses in this paper are based on the geometric optics approximation, which is justified in two dimensions but needs justification in four dimensions.Comment: 14 pages, 4 figures, minor errors corrected and some sentences added in the introduction, accepted for publication in Physical Review

    Electromagnetic field correlations near a surface with a nonlocal optical response

    Full text link
    The coherence length of the thermal electromagnetic field near a planar surface has a minimum value related to the nonlocal dielectric response of the material. We perform two model calculations of the electric energy density and the field's degree of spatial coherence. Above a polar crystal, the lattice constant gives the minimum coherence length. It also gives the upper limit to the near field energy density, cutting off its 1/z31/z^3 divergence. Near an electron plasma described by the semiclassical Lindhard dielectric function, the corresponding length scale is fixed by plasma screening to the Thomas-Fermi length. The electron mean free path, however, sets a larger scale where significant deviations from the local description are visible.Comment: 15 pages, 7 figure files (.eps), \documentclass[global]{svjour}, accepted in special issue "Optics on the Nanoscale" (Applied Physics B, eds. V. Shalaev and F. Tr\"ager
    • 

    corecore