435 research outputs found

    Neutrino-electron processes in a dense magnetized plasma

    Get PDF
    The neutrino-electron scattering in a dense degenerate magnetized plasma under the conditions μ2>2eB≫μE\mu^2 > 2eB \gg \mu E is investigated. The volume density of the neutrino energy and momentum losses due to this process are calculated. The results we have obtained demonstrate that plasma in the presence of an external magnetic field is more transparent for neutrino than non-magnetized plasma. It is shown that neutrino scattering under conditions considered does not lead to the neutrino force acting on plasma.Comment: 11 pages, LATEX, to be published in Central European Science Journa

    QCD vacuum structure in strong magnetic fields

    Get PDF
    We study the response of the QCD vacuum to strong magnetic fields, using a potential model for the quark-antiquark interaction. We find that production of spin-polarized u-ubar pairs is energetically favorable for fields B > B_crit \sim 10 GeV^2. We contrast the resulting u-ubar condensate with the quark condensate which is present at zero magnetic field, and we estimate the corresponding magnetization as a function of B.Comment: 16 pages, LaTeX, 3 eps figures. v2: references added. v3: fixed typ

    Our distorted view of magnetars: application of the Resonant Cyclotron Scattering model

    Get PDF
    The X-ray spectra of the magnetar candidates are customarily fitted with an empirical, two component model: an absorbed blackbody and a power-law. However, the physical interpretation of these two spectral components is rarely discussed. It has been recently proposed that the presence of a hot plasma in the magnetosphere of highly magnetized neutron stars might distort, through efficient resonant cyclotron scattering, the thermal emission from the neutron star surface, resulting in the production of non-thermal spectra. Here we discuss the Resonant Cyclotron Scattering (RCS) model, and present its XSPEC implementation, as well as preliminary results of its application to Anomalous X-ray Pulsars and Soft Gamma-ray Repeaters.Comment: 5 pages, 5 color figures; Astrophysics & Space Science, in press ("Isolated Neutron Stars"; London, UK

    High frequency oscillations during magnetar flares

    Full text link
    The recent discovery of high frequency oscillations during giant flares from the Soft Gamma Repeaters SGR 1806-20 and SGR 1900+14 may be the first direct detection of vibrations in a neutron star crust. If this interpretation is correct it offers a novel means of testing the neutron star equation of state, crustal breaking strain, and magnetic field configuration. We review the observational data on the magnetar oscillations, including new timing analysis of the SGR 1806-20 giant flare using data from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Rossi X-ray Timing Explorer (RXTE). We discuss the implications for the study of neutron star structure and crust thickness, and outline areas for future investigation.Comment: 5 pages, 1 figure, to appear in the proceedings of the conference "Isolated Neutron Stars: from the Interior to the Surface" (April 2006, London), eds. D. Page, R. Turolla, & S. Zane, Astrophysics & Space Science in pres

    Plasma Magnetosphere Formation Around Oscillating Magnetized Neutron Stars

    Full text link
    The notion of death line of rotating pulsars is applied to model of oscillating neutron stars. It is shown that the magnetosphere of typical non-rotating oscillating stars may not contain secondary plasma to support the generation of radio emission in the region of open field lines of plasma magnetosphere.Comment: Accepted for publication in Astrophysics & Space Scienc

    The Anatomy of a Magnetar: XMM Monitoring of the Transient Anomalous X-ray Pulsar XTE J1810-197

    Get PDF
    We present the latest results from a multi-epoch timing and spectral study of the Transient Anomalous X-ray Pulsar XTE J1810-197. We have acquired seven observations of this pulsar with the Newton X-ray Multi-mirror Mission (XMM-Newton) over the course of two and a half years, to follow the spectral evolution as the source fades from outburst. The spectrum is arguably best characterized by a two-temperature blackbody whose luminosities are decreasing exponentially with tau_1 = 870 days and tau_2 = 280 days, respectively. The temperatures of these components are currently cooling at a rate of 22% per year from a nearly constant value recorded at earlier epochs of kT_1 = 0.25 keV and kT_2 = 0.67 keV, respectively. The new data show that the temperature T_1 and luminosity of that component have nearly returned to their historic quiescent levels and that its pulsed fraction, which has steadily decreased with time, is now consistent with the previous lack of detected pulsations in quiescence. We also summarize the detections of radio emission from XTE J1810-197, the first confirmed for any AXP. We consider possible models for the emission geometry and mechanisms of XTE J1810-197.Comment: 8 pages, 7 figures, 1 table, latex. To appear in the proceedings of "Isolated Neutron Stars", Astrophysics & Space Science, in pres

    External Electromagnetic Fields of a Slowly Rotating Magnetized Star with Gravitomagnetic Charge

    Full text link
    We study Maxwell equations in the external background spacetime of a slowly rotating magnetized NUT star and find analytical solutions for the exterior electric fields after separating the equations of electric field into angular and radial parts in the lowest order approximation. The star is considered isolated and in vacuum, with dipolar magnetic field aligned with the axis of rotation. The contribution to the external electric field of star from the NUT charge is considered in detail.Comment: 6 pages, 2 figures, accepted for publication in Astrophysics and Space Scienc

    Newborn Magnetars as sources of Gravitational Radiation: constraints from High Energy observations of Magnetar Candidates

    Get PDF
    Soft Gamma Repeaters and the Anomalous X-ray Pulsars are believed to contain slowly spinning "magnetars". The enormous energy liberated in the 2004 Dece 27 giant flare from SGR 1806-20, together with the likely recurrence time of such events, points to an internal magnetic field strength ~ 10^{16} G. Such strong fields are expected to be generated by a coherent alpha-Omega dynamo in the early seconds after the Neutron Star formation, if its spin period is of a few milliseconds at most. A substantial deformation of the NS is caused by such fields and a newborn millisecond-spinning magnetar would thus radiate for a few days a strong gravitational wave signal. Such a signal may be detected with Advanced LIGO-class detectors up to the distance of the Virgo cluster, where ~ 1 magnetar per year are expected to form. Recent X-ray observations reveal that SNRs around magnetar candidates do not show evidence for a larger energy content than standard SNRs (Vink & Kuiper 2006). This is at variance with what would be expected if the spin energy of the young, millisecond NS were radiated away as electromagnetic radiation andd/or relativistic particle winds and, thus, transferred quickly to the expanding gas shell. We show here that these recent findings can be reconciled with the idea of magnetars being formed with fast spins, if most of their initial spin energy is radiated thorugh GWs. In particular, we find that this occurs for essentially the same parameter range that would make such objects detectable by Advanced LIGO-class detectors up to the Virgo Cluster.Comment: Proceedings of the Conference "Isolated Neutron stars: from the interior to the surface", Eds. D. Page, R. Turolla, S. Zan

    Effective Electromagnetic Lagrangian at Finite Temperature and Density in the Electroweak Model

    Full text link
    Using the exact propagators in a constant magnetic field, the effective electromagnetic Lagrangian at finite temperature and density is calculated to all orders in the field strength B within the framework of the complete electroweak model, in the weak coupling limit. The partition function and free energy are obtained explicitly and the finite temperature effective coupling is derived in closed form. Some implications of this result, potentially interesting to astrophysics and cosmology, are discussed.Comment: 14 pages, Revtex

    Short Gamma Ray Bursts as possible electromagnetic counterpart of coalescing binary systems

    Full text link
    Coalescing binary systems, consisting of two collapsed objects, are among the most promising sources of high frequency gravitational waves signals detectable, in principle, by ground-based interferometers. Binary systems of Neutron Star or Black Hole/Neutron Star mergers should also give rise to short Gamma Ray Bursts, a subclass of Gamma Ray Bursts. Short-hard-Gamma Ray Bursts might thus provide a powerful way to infer the merger rate of two-collapsed object binaries. Under the hypothesis that most short Gamma Ray Bursts originate from binaries of Neutron Star or Black Hole/Neutron Star mergers, we outline here the possibility to associate short Gamma Ray Bursts as electromagnetic counterpart of coalescing binary systems.Comment: 4 pages, 1 figur
    • …
    corecore