1,311 research outputs found

    Phase-Sensitive Tetracrystal Pairing-Symmetry Measurements and Broken Time-Reversal Symmetry States of High Tc Superconductors

    Full text link
    A detailed analysis of the symmetric tetracrystal geometry used in phase-sensitive pairing symmetry experiments on high Tc superconductors is carried out for both bulk and surface time-reversal symmetry-breaking states, such as the d+id' and d+is states. The results depend critically on the substrate geometry. In the general case, for the bulk d+id' (or d+is) state, the measured flux quantization should in general not be too different from that obtained in the pure d-wave case, provided |d'| << |d| (or |s| << |d|). However, in one particular high symmetry geometry, the d+id' state gives results that allow it to be distinguished from the pure d and the d + is states. Results are also given for the cases where surface d+is or d+id' states occur at a [110] surface of a bulk d-wave superconductor. Remarkably, in the highest symmetry geometry, a number of the broken time-reversal symmetry states discussed above give flux quantization conditions usually associated with states not having broken time- reversal symmetry.Comment: 6 page

    The effect of a barnacle-shaped excrescence on the hydrodynamic performance of a tidal turbine blade section

    Get PDF
    Efficient tidal turbine designs rely upon the hydrodynamic performance of the turbine blade sections. A significant consideration for the likely power generation capacity of a tidal turbine is the effect of biofouling on the blade performance. A turbine blade surface is susceptible to large scale macrofouling, mainly from encrusters, such as barnacles and molluscs, colonising the developing surface. This paper considers the case of when a barnacle attaches to the upper (suction) surface of the blade section. Results of experiments to investigate the unsteady flow characteristics of the blade section are presented, and the modification of the hydrodynamic performance coefficients due to the presence of a barnacle is evaluated. The barnacle has no significant effect upon the lift in steady flow and unsteady flow, but there is a very large increase in the drag. Dependent upon the degree of barnacle encrustation, the effect on a turbine blade drag may be significant and lead to a degradation of a turbine predicted performance

    "Dark energy" in the Local Void

    Full text link
    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (5×1015M\sim5\times10^{15}\,M_\odot) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.Comment: 6 pages, accepted as a Letter to the Editor by Astrophysics and Space Scienc

    Pairing symmetry and long range pair potential in a weak coupling theory of superconductivity

    Full text link
    We study the superconducting phase with two component order parameter scenario, such as, dx2y2+eiθsαd_{x^2-y^2} + e^{i\theta}s_{\alpha}, where α=xy,x2+y2\alpha = xy, x^2+y^2. We show, that in absence of orthorhombocity, the usual dx2y2d_{x^2-y^2} does not mix with usual sx2+y2s_{x^2+y^2} symmetry gap in an anisotropic band structure. But the sxys_{xy} symmetry does mix with the usual d-wave for θ=0\theta =0. The d-wave symmetry with higher harmonics present in it also mixes with higher order extended ss wave symmetry. The required pair potential to obtain higher anisotropic dx2y2d_{x^2-y^2} and extended s-wave symmetries, is derived by considering longer ranged two-body attractive potential in the spirit of tight binding lattice. We demonstrate that the dominant pairing symmetry changes drastically from dd to ss like as the attractive pair potential is obtained from longer ranged interaction. More specifically, a typical length scale of interaction ξ\xi, which could be even/odd multiples of lattice spacing leads to predominant s/ds/d wave symmetry. The role of long range interaction on pairing symmetry has further been emphasized by studying the typical interplay in the temperature dependencies of these higher order dd and ss wave pairing symmetries.Comment: Revtex 8 pages, 7 figures embeded in the text, To appear in PR

    Shape and blocking effects on odd-even mass differences and rotational motion of nuclei

    Get PDF
    Nuclear shapes and odd-nucleon blockings strongly influence the odd-even differences of nuclear masses. When such effects are taken into account, the determination of the pairing strength is modified resulting in larger pair gaps. The modified pairing strength leads to an improved self-consistent description of moments of inertia and backbending frequencies, with no additional parameters.Comment: 7 pages, 3 figures, subm to PR

    Enhancing spaceflight safety with UOS3 cubesat

    No full text
    Earth orbits are becoming increasingly congested. This will not only impact future space operations but also become a concern for the population on the ground; with more spacecraft being flown, more objects will re-enter the atmosphere in an uncontrolled fashion. Parts of these satellites can reach Earth surface and endanger the ground population (e.g. ROSAT or UARS satellites). A student-run project from the University of Southampton aims to build a 1U cubesat (approx. 10 by 10 by 10 cm satellite), which will gather data that will improve the accuracy of re-entry predictions. The cubesat will record and deliver its position and attitude during the orbital decay, thus providing validation data for re-entry prediction tools. This will reduce the risk to the ground population because more accurate prognoses will allow mitigation measures to be implemented in the areas at risk. The mission could also allow the risk of collision between spacecraft to be estimated more accurately thanks to improvement of the atmospheric models. This would give the decision makers more complete information to use, for instance, in collision avoidance manoeuvre plannin

    Thermodynamical Bethe Ansatz and Condensed Matter

    Full text link
    The basics of the thermodynamic Bethe ansatz equation are given. The simplest case is repulsive delta function bosons, the thermodynamic equation contains only one unknown function. We also treat the XXX model with spin 1/2 and the XXZ model and the XYZ model. This method is very useful for the investigation of the low temperature thermodynamics of solvable systems.Comment: 52 pages, 6 figures, latex, lamuphys.st

    Multi-Periodic Oscillations in Cepheids and RR Lyrae-Type Stars

    Full text link
    Classical Cepheids and RR Lyrae-type stars are usually considered to be textbook examples of purely radial, strictly periodic pulsators. Not all the variables, however, conform to this simple picture. In this review I discuss different forms of multi-periodicity observed in Cepheids and RR Lyrae stars, including Blazhko effect and various types of radial and nonradial multi-mode oscillations.Comment: Proceedings of the 20th Stellar Pulsation Conference Series: "Impact of new instrumentation & new insights in stellar pulsations", 5-9 September 2011, Granada, Spai

    Topological Charged Black Holes in High Dimensional Spacetimes and Their Formation from Gravitational Collapse of a Type II Fluid

    Full text link
    Topological charged black holes coupled with a cosmological constant in R2×XD2R^{2}\times X^{D-2} spacetimes are studied, where XD2X^{D-2} is an Einstein space of the form (D2)RAB=k(D3)hAB{}^{(D-2)}R_{AB} = k(D-3) h_{AB}. The global structure for the four-dimensional spacetimes with k=0k = 0 is investigated systematically. The most general solutions that represent a Type IIII fluid in such a high dimensional spacetime are found, and showed that topological charged black holes can be formed from the gravitational collapse of such a fluid. When the spacetime is (asymptotically) self-similar, the collapse always forms black holes for k=0,1k = 0, -1, in contrast to the case k=1k = 1, where it can form either balck holes or naked singularities.Comment: 14 figures, to appear in Phys. Rev.

    Graviton production from extra dimensions

    Get PDF
    Graviton production due to collapsing extra dimensions is studied. The momenta lying in the extra dimensions are taken into account. A DD-dimensional background is matched to an effectively four-dimensional standard radiation dominated universe. Using observational constraints on the present gravitational wave spectrum, a bound on the maximal temperature at the beginning of the radiation era is derived. This expression depends on the number of extra dimensions, as well as on the DD-dimensional Planck mass. Furthermore, it is found that the extra dimensions have to be large.Comment: LaTeX file, 14 pages, 4 figure
    corecore