28 research outputs found

    Stability of Subsequent-to-Leading-Logarithm Corrections to the Effective Potential for Radiative Electroweak Symmetry Breaking

    Full text link
    We demonstrate the stability under subsequent-to-leading logarithm corrections of the quartic scalar-field coupling constant λ\lambda and the running Higgs boson mass obtained from the (initially massless) effective potential for radiatively broken electroweak symmetry in the single-Higgs-Doublet Standard Model. Such subsequent-to-leading logarithm contributions are systematically extracted from the renormalization group equation considered beyond one-loop order. We show λ\lambda to be the dominant coupling constant of the effective potential for the radiatively broken case of electroweak symmetry. We demonstrate the stability of λ\lambda and the running Higgs boson mass through five orders of successively subleading logarithmic corrections to the scalar-field-theory projection of the effective potential for which all coupling constants except the dominant coupling constant λ\lambda are disregarded. We present a full next-to-leading logarithm potential in the three dominant Standard Model coupling constants (tt-quark-Yukawa, αs\alpha_s, and λ\lambda) from these coupling constants' contribution to two loop β\beta- and γ\gamma-functions. Finally, we demonstrate the manifest order-by-order stability of the physical Higgs boson mass in the 220-231 GeV range. In particular, we obtain a 231 GeV physical Higgs boson mass inclusive of the tt-quark-Yukawa and αs\alpha_s coupling constants to next-to-leading logarithm order, and inclusive of the smaller SU(2)×U(1)SU(2)\times U(1) gauge coupling constants to leading logarithm order.Comment: 21 pages, latex2e, 2 eps figures embedded in latex file. Updated version contains expanded analysis in Section

    Optimal Renormalization-Group Improvement of Two Radiatively-Broken Gauge Theories

    Full text link
    In the absence of a tree-level scalar-field mass, renormalization-group (RG) methods permit the explicit summation of leading-logarithm contributions to all orders of the perturbative series for the effective-potential functions utilized in radiative symmetry breaking. For scalar-field electrodynamics, such a summation of leading logarithm contributions leads to upper bounds on the magnitudes of both gauge and scalar-field coupling constants, and suggests the possibility of an additional phase of spontaneous symmetry breaking characterized by a scalar-field mass comparable to that of the theory's gauge boson. For radiatively-broken electroweak symmetry, the all-orders summation of leading logarithm terms involving the dominant three couplings (quartic scalar-field, t-quark Yukawa, and QCD) contributing to standard-model radiative corrections leads to an RG-improved potential characterized by a 216 GeV Higgs boson mass. Upon incorporation of electroweak gauge couplants we find that the predicted Higgs mass increases to 218 GeV. The potential is also characterized by a quartic scalar-field coupling over five times larger than that anticipated for an equivalent Higgs mass obtained via conventional spontaneous symmetry breaking, leading to a concomitant enhancement of processes (such as W+WZZW^+ W^- \to ZZ) sensitive to this coupling. Moreover, if the QCD coupling constant is taken to be sufficiently strong, the tree potential's local minimum at ϕ=0\phi = 0 is shown to be restored for the summation of leading logarithm corrections. Thus if QCD exhibits a two-phase structure similar to that of N=1N = 1 supersymmetric Yang-Mills theory, the weaker asymptotically-free phase of QCD may be selected by the large logarithm behaviour of the RG-improved effective potential for radiatively broken electroweak symmetry.Comment: latex2e using amsmath, 36 pages, 7 eps figures embedded in latex. Section 8.3 errors asociated with electroweak coupling effects are correcte

    B.J. Ball: An appreciation

    No full text

    Introduction

    No full text
    corecore