660 research outputs found
Recommended from our members
The evaluation of Federal Fabrics-Fibers electrochemical capacitors
The electrochemical capacitor devices described in this report were deliverables from the US Department of Energy-Idaho Operations Office (DOE-ID) as part of the US Department of Energy`s (DOE) High Power Energy Storage Program. The Idaho National Engineering and Environmental Laboratory (INEEL) has the responsibility for technical management, testing, and evaluation of high-power batteries and electrochemical capacitors under this Program. The DOE is currently developing various electrochemical capacitors as candidate power assist devices for the Partnership for a New Generation of Vehicles (PNGV) fast response engine requirement. This contract with Federal Fabrics-Fibers was intended to evaluate the use of their novel Z-axis carbon fiber materials as candidate electrodes for electrochemical capacitors. Deliverables were sent to the INEEL`s Energy Storage Technologies (EST) Laboratory for independent testing and evaluation. This report describes performance testing on four selected devices delivered over a 2-year period. Due to the highly experimental nature of the packages, life cycle testing was not conducted
Thermodynamics and Kinetic Theory of Relativistic Gases in 2-D Cosmological Models
A kinetic theory of relativistic gases in a two-dimensional space is
developed in order to obtain the equilibrium distribution function and the
expressions for the fields of energy per particle, pressure, entropy per
particle and heat capacities in equilibrium. Furthermore, by using the method
of Chapman and Enskog for a kinetic model of the Boltzmann equation the
non-equilibrium energy-momentum tensor and the entropy production rate are
determined for a universe described by a two-dimensional Robertson-Walker
metric. The solutions of the gravitational field equations that consider the
non-equilibrium energy-momentum tensor - associated with the coefficient of
bulk viscosity - show that opposed to the four-dimensional case, the cosmic
scale factor attains a maximum value at a finite time decreasing to a "big
crunch" and that there exists a solution of the gravitational field equations
corresponding to a "false vacuum". The evolution of the fields of pressure,
energy density and entropy production rate with the time is also discussed.Comment: 23 pages, accepted in PR
Charged vortices in superfluid systems with pairing of spatially separated carriers
It is shown that in a magnetic field the vortices in superfluid electron-hole
systems carry a real electrical charge. The charge value depends on the
relation between the magnetic length and the Bohr radiuses of electrons and
holes. In double layer systems at equal electron and hole filling factors in
the case of the electron and hole Bohr radiuses much larger than the magnetic
length the vortex charge is equal to the universal value (electron charge times
the filling factor).Comment: 4 page
Skyrmion Excitations in Quantum Hall Systems
Using finite size calculations on the surface of a sphere we study the
topological (skyrmion) excitation in quantum Hall system with spin degree of
freedom at filling factors around . In the absence of Zeeman energy, we
find, in systems with one quasi-particle or one quasi-hole, the lowest energy
band consists of states with , where and are the total orbital and
spin angular momentum. These different spin states are almost degenerate in the
thermodynamic limit and their symmetry-breaking ground state is the state with
one skyrmion of infinite size. In the presence of Zeeman energy, the skyrmion
size is determined by the interplay of the Zeeman energy and electron-electron
interaction and the skyrmion shrinks to a spin texture of finite size. We have
calculated the energy gap of the system at infinite wave vector limit as a
function of the Zeeman energy and find there are kinks in the energy gap
associated with the shrinking of the size of the skyrmion. breaking ground
state is the state with one skyrmion of infinite size. In the presence of
Zeeman energy, the skyrmion size is determined by the interplay of the Zeeman
energy and electron-electronComment: 4 pages, 5 postscript figures available upon reques
Onset of Superfluidity in 4He Films Adsorbed on Disordered Substrates
We have studied 4He films adsorbed in two porous glasses, aerogel and Vycor,
using high precision torsional oscillator and DC calorimetry techniques. Our
investigation focused on the onset of superfluidity at low temperatures as the
4He coverage is increased. Torsional oscillator measurements of the 4He-aerogel
system were used to determine the superfluid density of films with transition
temperatures as low as 20 mK. Heat capacity measurements of the 4He-Vycor
system probed the excitation spectrum of both non-superfluid and superfluid
films for temperatures down to 10 mK. Both sets of measurements suggest that
the critical coverage for the onset of superfluidity corresponds to a mobility
edge in the chemical potential, so that the onset transition is the bosonic
analog of a superconductor-insulator transition. The superfluid density
measurements, however, are not in agreement with the scaling theory of an onset
transition from a gapless, Bose glass phase to a superfluid. The heat capacity
measurements show that the non-superfluid phase is better characterized as an
insulator with a gap.Comment: 15 pages (RevTex), 21 figures (postscript
Decomposition and nutrient release of leguminous plants in coffee agroforestry systems.
Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and
Stylosanthes guianensis) in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and(lignin+polyphenol)/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD), the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA), there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1). Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants
Carbon clusters near the crossover to fullerene stability
The thermodynamic stability of structural isomers of ,
, and , including
fullerenes, is studied using density functional and quantum Monte Carlo
methods. The energetic ordering of the different isomers depends sensitively on
the treatment of electron correlation. Fixed-node diffusion quantum Monte Carlo
calculations predict that a isomer is the smallest stable
graphitic fragment and that the smallest stable fullerenes are the
and clusters with and
symmetry, respectively. These results support proposals that a
solid could be synthesized by cluster deposition.Comment: 4 pages, includes 4 figures. For additional graphics, online paper
and related information see http://www.tcm.phy.cam.ac.uk/~prck
Murchison Widefield Array rapid-response observations of the short GRB 180805A
Abstract
Here we present stringent low-frequency (185 MHz) limits on coherent radio emission associated with a short-duration gamma-ray burst (SGRB). Our observations of the short gamma-ray burst (GRB) 180805A were taken with the upgraded Murchison Widefield Array (MWA) rapid-response system, which triggered within 20s of receiving the transient alert from the Swift Burst Alert Telescope, corresponding to 83.7 s post-burst. The SGRB was observed for a total of 30 min, resulting in a
persistent flux density upper limit of 40.2 mJy beamâ1. Transient searches were conducted at the Swift position of this GRB on 0.5 s, 5 s, 30 s and 2 min timescales, resulting in
limits of 570â1 830, 270â630, 200â420, and 100â200 mJy beamâ1, respectively. We also performed a dedispersion search for prompt signals at the position of the SGRB with a temporal and spectral resolution of 0.5 s and 1.28 MHz, respectively, resulting in a
fluence upper-limit range from 570 Jy ms at DM
pc cmâ3 (
) to 1 750 Jy ms at DM
pc cmâ3 (
, corresponding to the known redshift range of SGRBs. We compare the fluence prompt emission limit and the persistent upper limit to SGRB coherent emission models assuming the merger resulted in a stable magnetar remnant. Our observations were not sensitive enough to detect prompt emission associated with the alignment of magnetic fields of a binary neutron star just prior to the merger, from the interaction between the relativistic jet and the interstellar medium (ISM) or persistent pulsar-like emission from the spin-down of the magnetar. However, in the case of a more powerful SGRB (a gamma-ray fluence an order of magnitude higher than GRB 180805A and/or a brighter X-ray counterpart), our MWA observations may be sensitive enough to detect coherent radio emission from the jet-ISM interaction and/or the magnetar remnant. Finally, we demonstrate that of all current low- frequency radio telescopes, only the MWA has the sensitivity and response times capable of probing prompt emission models associated with the initial SGRB merger event.</jats:p
Failing boys and moral panics: perspectives on the underachievement debate
The paper re-examines the underachievement debate from the perspective of the âdiscourse of derisionâ that surrounds much writing in this area. It considers the contradictions and inconsistencies which underpin much of the discourse â from a reinterpretation of examination scores, to the conflation of the concepts of âunderâ and âlowâ achievement and finally to the lack of consensus on a means of defining and measuring the term underachievement. In doing so, this paper suggests a more innovative approach for understanding, re-evaluating and perhaps rejecting the notion of underachievement
- âŠ